{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 03 Reading bar charts - comparing two sets of data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%html\n", "" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import plotly.graph_objects as go\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import findspark\n", "\n", "findspark.init()\n", "from pyspark.context import SparkContext\n", "from pyspark.sql.session import SparkSession\n", "\n", "spark = SparkSession.builder.appName(\"statistics\").master(\"local\").getOrCreate()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[khanacademy](https://www.khanacademy.org/math/ap-statistics/analyzing-categorical-ap/analyzing-one-categorical-variable/v/reading-bar-charts-2?modal=1)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Reading bar charts - comparing two sets of data fig 1](./imgs/01-03-01.png)![Reading bar charts - comparing two sets of data fig 2](./imgs/01-03-02.png)![Reading bar charts - comparing two sets of data fig 3](./imgs/01-03-03.png)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "dataset = {\n", " \"Student\": [\"Brandon\", \"Vanessa\", \"Daniel\", \"Kevin\", \"Wiliam\"],\n", " \"Midterm\": [85, 60, 60, 65, 100],\n", " \"Final\": [90, 90, 65, 80, 95],\n", "}" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MidtermFinal
Student
Brandon8590
Vanessa6090
Daniel6065
Kevin6580
Wiliam10095
\n", "
" ], "text/plain": [ " Midterm Final\n", "Student \n", "Brandon 85 90\n", "Vanessa 60 90\n", "Daniel 60 65\n", "Kevin 65 80\n", "Wiliam 100 95" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame(dataset).set_index(\"Student\")\n", "df" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+-------+-------+-----+\n", "|Student|Midterm|Final|\n", "+-------+-------+-----+\n", "|Brandon| 85| 90|\n", "|Vanessa| 60| 90|\n", "| Daniel| 60| 65|\n", "| Kevin| 65| 80|\n", "| Wiliam| 100| 95|\n", "+-------+-------+-----+\n", "\n" ] } ], "source": [ "sdf = spark.createDataFrame(zip(*dataset.values()), list(dataset.keys()))\n", "sdf.show()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAE3CAYAAABRmAGSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiqklEQVR4nO3df5xVdZ3H8ddbQEFFUSQFAcEyFQHJAH9lkm6ppGib6/orf0e7rauZVuxWD6ncMrfWSF1/lIW6iJrbpmuuaebsmqSCiviDRBNUzB+EopCQgp/943wHLuPMMDN3Zs7le9/Px+M+5p4f95zPPTP3Ped+zznfo4jAzMzysknZBZiZWedzuJuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZcjhbjVJ0gGSnmpl+nRJF3RnTd1F0imSftvO17S6vdq5rAZJZ3TGsqw8DveSSPqIpFmS3pD0mqT7JI0ru66uJmmqpJB0dpPxZ6fxUwEi4t6I2LWNy5wgaXEXlFtzJA1L22lFxePR9myvKtc/VdI7Tda/rKvXa+3ncC+BpK2A24BLgG2BHYFvAH/p5PX06MzldaIFwElNxp2cxnc7ST3LWG+V+kXElumxZzev+8aKdW8ZEf26ef3WBg73cnwQICJmRsSaiFgZEXdGxLzGGSR9VtJ8ScslPSlprzR+9/S1eZmkJyRNqnjNdEmXS7pd0p+Bj0kaJOk/JS2RtFDSWRXzj5c0R9Kbkl6R9G8tFZzqeSZ9y7hV0qCKaSHp7yQ9neq6TJJaef+zgc0l7ZFevwfQO41vXOZ6e+OSPiTp4bQ9bkzzI2kL4H+AQRV7koMkbSJpiqQ/SFoq6SZJ26bXNO79ni7peeA3qSnkPkkXp/fwrKT90vgXJL0q6eRWts+pFb+vZyV9rul7kXRuWs5Lkk6tmN4/bdM3JT0IvL+VbdfS+ptur0WSzpM0L307vFFS4zbbRtJt6W/i9fR8cHvX2UwN+0n6k6QhaXjPtPzd0nDj76Pxb/pTFa9t1/aXNDEtY7mkFyWdV239uXG4l2MBsEbSNZIOk7RN5URJfwNMpdi73QqYBCyV1Av4b+BO4H3APwIzJFV+HT8e+BegLzArzf8oxbeDg4EvSDokzTsNmBYRW1EEyk3NFSvpIOA7wDHAQOA54IYmsx0OjANGp/kOoXXXsW7v/eQ03CxJmwK/SPNsC/wM+DRARPwZOAz4Y8We5B8pts1RwIHAIOB14LImiz4Q2L2i1r2BeUB/4Pr0HscBHwBOBC6VtGULZb5KsQ22Ak4FLlb6h5zsAGxN8Xs4Hbis4vd+GbCKYtuelh6d4RjgUGA4xe/llDR+E+CnwE7AUGAlcGm1K4uIWcCVwDWS+gD/AXw9In6fZvkDcADFdvgG8B+SBlYsoj3b/2rgcxHRFxgJ/Kba+rMTEX6U8KAIlenAYmA1cCuwfZr2K+DsZl5zAPAysEnFuJnA1PR8OnBtxbS9geebLOOfgJ+m5/9H8SHbbgO1Xg1cVDG8JfAOMCwNB/CRiuk3AVNaWNZUig/9UOB5oFf6OSSNb3wvE4DF6flHgT8CqljOLOCCpvNWTJ8PHFwxPDDV3BMYlmreuWL6KcDTFcOj0jzbV4xbCoxp4+/3F42/w1TfSqBnxfRXgX2AHqmu3SqmfRv4bQvLbax9WcXjvKbbAFgEnFgxfBFwRQvLHAO8XjHcAJzRyu/v7Sbrv6diei/gIeAx4I7K31kzy5oLHNmR7Z/+Zj4HbNVdn9mN7eE995JExPyIOCUiBlPseQwCfpAmD6HYy2lqEPBCRLxbMe45ir3BRi9UPN+JorliWeMD+Gdg+zT9dIomot9Lmi3p8BbKHZTW01j7CooPWuV6X654/hbFP4AWRcTzwDMUQfZ0RLzQyuyDgBcjfaqT51qaOdkJ+K+K9z0fWMO69w7rbyuAVyqer0x1Nh3X7PtK38DuT81Wy4CJwHYVsyyNiNUVw43baADFP5zKWjb03qD4h9wvPb7XwjzN/k4kbS7pSknPSXqT4p98P7X9GM1NFevuFxEfa5wQEe9Q7GSMBL5f+TuTdJKkuRW/k5Gsv43as/0/TbGNn5P0v5L2bWPtdcPhXgOi+No6neKPHYoPenPtrn8Ehkiq/L0NBV6sXFzF8xeAhU0+iH0jYmJa79MRcRxFE893gZtTG3Zz692pcSDN07/JejviWuDc9LM1LwE7Suu14w+teN5c16YvAIc1ee+9I6KlbdVhkjYD/hP4HsWeZj/gdqC14w6NllB8cxtSMW5oC/N2lnOBXYG9o2iS+2ga35Z6WyVpR+B8imaf76dtg6SdgB8BZwL90zZ6vKPrjIjZEXEkxd/uL2ihSbGeOdxLIGm3dHBtcBoeAhwH3J9m+TFwnqQPq/CB9OF4gGIP7MuSekmaABzBe9u/Gz0ILJf0FUl9JPWQNFLplEtJJ0oakL4JLEuvebeZ5cwETpU0Jn1Yvw08EBGLqtoQcCPwCTb8wfwdRQCeld73XwPjK6a/AvSXtHXFuCuAf0nbDUkDJB1ZZb0t2RTYjBTUkg6jeF8bFBFrgJ8DU9Me9QiKYxBdqS/FXvAyFQeZz++MhaZ/vtMpmvFOp/in/K00eQuKf6ZL0rynsm5npr3r2VTSCZK2Tt8U3qT5v9u65nAvx3KK9vAHVJzVcj/FXsy5ABHxM4qDoteneX8BbBsRb1OE+WHAn4B/B06KdQes1pOC43CKNtWF6TU/pjigBcXBtickraA4uHpsRKxsZjm/Br5OsXf6EsW3imOr2QBpuSsj4tfNrbPJfG8Df03RLvsa8LcUgdg4/fcU/4CeTV/5B6X3cytwp6TlFNt472prbqG+5cBZFP+kXqc4qH1rOxZxJkVzw8sU4fjTTi6xqR8AfSj+Hu6naBtvj7/V+ue5r5D0Popt8D6Kg6hBcWD5VEkHRMSTwPcp/lG/QtGmfl8V7+EzwKLUrPR3wAlVLCtLWr8Z08zMcuA9dzOzDDnczcwy5HA3M8uQw93MLEMOdzOzDNVEb3jbbbddDBs2rOwyzMw2Kg899NCfImJAc9NqItyHDRvGnDlzyi7DzGyjIqnFrircLGNmliGHu5lZhhzuZmYZqok2d7N33nmHxYsXs2rVqrJL2Sj07t2bwYMH06tXr7JLsRrlcLeasHjxYvr27cuwYcNQq3fos4hg6dKlLF68mOHDh5ddjtWoDTbLSPpJun/h4xXjtpV0l4p7Zt7VeLuw1D3tD1Xca3Nek9uMmbVo1apV9O/f38HeBpLo37+/v+VYq9rS5j6domvYSlOAuyNiF+DuNAxFV7S7pMdk4PLOKdPqgYO97bytbEM2GO4R8X8UfWhXOhK4Jj2/huJGxI3jr43C/RS37hqI2UZAEieeeOLa4dWrVzNgwAAOP7y4++Ctt97KhRde2Oxrt9yyuPvbokWLuP7667u+WLMN6Gib+/YR8VJ6/jLr7ku5I+vfC3JxGvcSTUiaTLF3z9ChXX1XMdvYDJvyy05d3qILP7nBebbYYgsef/xxVq5cSZ8+fbjrrrvYccd1t4mdNGkSkyZNan09KdyPP/74Nte2evVqevb04a/uVO3fV1v+nspW9amQ6Y4r7b7jR0RcFRFjI2LsgAHNXj1r1u0mTpzIL39ZfPBnzpzJcccdt3ba9OnTOfPMMwFYuHAh++67L6NGjeJrX/va2nmmTJnCvffey5gxY7j44otZs2YNX/rSlxg3bhyjR4/myiuvBKChoYEDDjiASZMmMWLECBoaGjjwwAM58sgj2XnnnZkyZQozZsxg/PjxjBo1ij/8obn7pZu1rKPh/kpjc0v6+Woa/yLr3+h3MNXfRNms2xx77LHccMMNrFq1innz5rH33s3fme/ss8/m7//+73nssccYOHBdy+OFF17IAQccwNy5cznnnHO4+uqr2XrrrZk9ezazZ8/mRz/6EQsXLgTg4YcfZtq0aSxYsACARx99lCuuuIL58+dz3XXXsWDBAh588EHOOOMMLrnkkq5/85aVjob7ray7ie/JwC0V409KZ83sA7xR0XxjVvNGjx7NokWLmDlzJhMnTmxxvvvuu2/tXv1nPvOZFue78847ufbaaxkzZgx77703S5cu5emnnwZg/Pjx653KOG7cOAYOHMhmm23G+9//fj7xieIe26NGjWLRokWd8O6snmywoU/STGACsJ2kxRR3Sr8QuEnS6cBzwDFp9tuBicAzwFsUN8g126hMmjSJ8847j4aGBpYuXdrifG05YyUiuOSSSzjkkEPWG9/Q0MAWW2yx3rjNNtts7fNNNtlk7fAmm2zC6tWr2/MWzDYc7hFxXAuTDm5m3gD+odqizMp02mmn0a9fP0aNGkVDQ0Oz8+y///7ccMMNnHjiicyYMWPt+L59+7J8+fK1w4cccgiXX345Bx10EL169WLBggXrHaQ16yruW8asicGDB3PWWWe1Os+0adO47LLLGDVqFC++uO6w0ujRo+nRowd77rknF198MWeccQYjRoxgr732YuTIkXzuc5/zXrh1CxU72+UaO3ZsuD/3+jZ//nx23333ssvYqHibdVwup0JKeigixjY3zXvuZmYZcribmWXI4W5mliFf82xm1l5Tt+6EZbxR/TJa4T13M7MMOdzNzDLkcDdLevTowZgxY9Y+Fi1axH777dfh5Z1yyincfPPNnVihWdu5zd1qU2e0aa63vA23b/bp04e5c+euN27WrFmdW4dZN/Geu1krGm/C0dDQwIQJEzj66KPZbbfdOOGEE2i8APCb3/wm48aNY+TIkUyePJlauDDQzOFulqxcuXJtk8ynPvWp90x/5JFH+MEPfsCTTz7Js88+y3333QfAmWeeyezZs9fe6OO2227r7tLN3sPNMmZJc80ylcaPH8/gwYMB1rbJf+QjH+Gee+7hoosu4q233uK1115jjz324Igjjuimqs2a53A3a6PKLnl79OjB6tWrWbVqFZ///OeZM2cOQ4YMYerUqaxatarEKs0KbpYxq0JjkG+33XasWLHCZ8dYzfCee6Vqz9Do4ivOupW3RZv069ePz372s4wcOZIddtiBcePGlV2SGeBwt1pVwj+HFStWtDhuwoQJTJgwYe34Sy+9dO3zCy64gAsuuOA9r50+fXqn12jWVm6WMTPLkMPdzCxDDnczsww53K1m+MrOtvO2sg1xuFtN6N27N0uXLnVotUFEsHTpUnr37l12KVbDfLaM1YTBgwezePFilixZUnYpG4XevXuvvVrWrDkOd6sJvXr1Yvjw4WWXYZYNN8uYmWXI4W5mlqFsmmWGTfll1ctY5ONTZpYJ77mbmWXI4W5mliGHu5lZhhzuZmYZcribmWWoqnCXdI6kJyQ9LmmmpN6Shkt6QNIzkm6UtGlnFWtmZm3T4XCXtCNwFjA2IkYCPYBjge8CF0fEB4DXgdM7o1AzM2u7aptlegJ9JPUENgdeAg4CGm8keQ1wVJXrMDOzdupwuEfEi8D3gOcpQv0N4CFgWUSsTrMtBnastkgzM2ufDl+hKmkb4EhgOLAM+BlwaDtePxmYDDB06NCOlmFm3aXam6ZD3dw4vRZU0yzzV8DCiFgSEe8APwf2B/qlZhqAwcCLzb04Iq6KiLERMXbAgAFVlGFmZk1VE+7PA/tI2lySgIOBJ4F7gKPTPCcDt1RXopmZtVc1be4PUBw4fRh4LC3rKuArwBclPQP0B67uhDrNzKwdquoVMiLOB85vMvpZYHw1yzUzs+r4ClUzsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMuRwNzPLkMPdzCxDDnczsww53M3MMtSz7ALMatrUrTthGW9Uv4xOMGzKL6t6/aLenVSIdQvvuZuZZcjhbmaWIYe7mVmGHO5mZhlyuJuZZaiqcJfUT9LNkn4vab6kfSVtK+kuSU+nn9t0VrFmZtY21e65TwPuiIjdgD2B+cAU4O6I2AW4Ow2bmVk36nC4S9oa+ChwNUBEvB0Ry4AjgWvSbNcAR1VXopmZtVc1e+7DgSXATyU9IunHkrYAto+Il9I8LwPbV1ukmZm1TzVXqPYE9gL+MSIekDSNJk0wERGSorkXS5oMTAYYOnRoFWVYU9VeiQj5XI3oqzKtXlWz574YWBwRD6ThmynC/hVJAwHSz1ebe3FEXBURYyNi7IABA6oow8zMmupwuEfEy8ALknZNow4GngRuBU5O404GbqmqQjMza7dqOw77R2CGpE2BZ4FTKf5h3CTpdOA54Jgq12FmZu1UVbhHxFxgbDOTDq5muWZmVh1foWpmliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mlqGqw11SD0mPSLotDQ+X9ICkZyTdKGnT6ss0M7P26Iw997OB+RXD3wUujogPAK8Dp3fCOszMrB2qCndJg4FPAj9OwwIOAm5Os1wDHFXNOszMrP2q3XP/AfBl4N003B9YFhGr0/BiYMcq12FmZu3U4XCXdDjwakQ81MHXT5Y0R9KcJUuWdLQMMzNrRjV77vsDkyQtAm6gaI6ZBvST1DPNMxh4sbkXR8RVETE2IsYOGDCgijLMzKypDod7RPxTRAyOiGHAscBvIuIE4B7g6DTbycAtVVdpZmbt0hXnuX8F+KKkZyja4K/ugnWYmVkrem54lg2LiAagIT1/FhjfGcs1M7OO8RWqZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhhzuZmYZcribmWXI4W5mliGHu5lZhjoc7pKGSLpH0pOSnpB0dhq/raS7JD2dfm7TeeWamVlbVLPnvho4NyJGAPsA/yBpBDAFuDsidgHuTsNmZtaNOhzuEfFSRDycni8H5gM7AkcC16TZrgGOqrJGMzNrp05pc5c0DPgQ8ACwfUS8lCa9DGzfGeswM7O2qzrcJW0J/CfwhYh4s3JaRAQQLbxusqQ5kuYsWbKk2jLMzKxCVeEuqRdFsM+IiJ+n0a9IGpimDwRebe61EXFVRIyNiLEDBgyopgwzM2uimrNlBFwNzI+If6uYdCtwcnp+MnBLx8szM7OO6FnFa/cHPgM8JmluGvfPwIXATZJOB54DjqmqQjMza7cOh3tE/BZQC5MP7uhyzcyser5C1cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQ10S7pIOlfSUpGckTemKdZiZWcs6Pdwl9QAuAw4DRgDHSRrR2esxM7OWdcWe+3jgmYh4NiLeBm4AjuyC9ZiZWQu6Itx3BF6oGF6cxpmZWTdRRHTuAqWjgUMj4ow0/Blg74g4s8l8k4HJaXBX4KlOLaRjtgP+VHYRNcLbouDtsI63xTq1si12iogBzU3o2QUrexEYUjE8OI1bT0RcBVzVBevvMElzImJs2XXUAm+LgrfDOt4W62wM26IrmmVmA7tIGi5pU+BY4NYuWI+ZmbWg0/fcI2K1pDOBXwE9gJ9ExBOdvR4zM2tZVzTLEBG3A7d3xbK7WE01E5XM26Lg7bCOt8U6Nb8tOv2AqpmZlc/dD5iZZcjhbmaWIYe7mVmGuuSA6sZG0n7AMCq2R0RcW1pBJZH0SWAPoHfjuIj4ZnkVdS9Je7U2PSIe7q5aaok/H+tI2obiOp7KbVGTfxd1H+6SrgPeD8wF1qTRAdTVH6+kK4DNgY8BPwaOBh4staju9/1WpgVwUHcVUiv8+VhH0reAU4A/UGwDqOG/i7o/W0bSfGBE1PmGkDQvIkZX/NwS+J+IOKDs2qw8/nysI+kpYFTqELHmuc0dHgd2KLuIGrAy/XxL0iDgHWBgifWURtLmkr4m6ao0vIukw8uuqyT+fKzzONCv7CLaqu6bZSg6AHpS0oPAXxpHRsSk8koqxW2S+gH/CjxM8XXzx6VWVJ6fAg8B+6XhF4GfAbeVVlF5/PlY5zvAI5IeZyPYFm6WkQ5sbnxE/G9311IrJG0G9I6IN8qupQyNnUJJeiQiPpTGPRoRe5ZdW3fz52MdSU8AVwKPAe82jq/VbVH3e+4R8b+StgfGpVEPRsSrZdZUBkl/A9wREcuBLwF7SfpWRDxScmlleFtSH9JBM0nvp2JPrZ7UanCV5K2I+GHZRbRV3be5SzqG4qyQvwGOAR5IfdLXm69HxHJJHwH+CrgauKLkmspyPnAHMETSDOBu4MvlltS9JP02/Vwu6c2Kx3JJb5ZdX0nulfQdSftK2qvxUXZRLXGzjPQo8PHGvXVJA4Bf19tX8MYmCEnfAR6LiOsrmyXqjaT+wD6AgPsjohZuzGAlknRPM6MjInwqZC2S9FhEjKoY3gR4tHJcPZB0G8WBw48De1GcPfNgPf2Tk7RbRPy+pb2xWr1YpStJ+iEwMyJ+V3Yt1j4Od+lfgdHAzDTqb4F5EfGV8qrqfpI2Bw6l2Gt/WtJAinN67yy5tG4j6aqImLyx7aF1JUknU3wmdgX+C7ghIuaUW1V5NqaruOs+3AEkfRrYPw3eGxH/VWY9ZUgHDRdHxF8kTaD4h3dtRCwrsy6rDZK2BT5NcWe1oRGxS8kldbuWruKOiNNLLawFDncDQNJcYCxFHyK3A7cAe0TExBLLKo37U1mfpPEUe/BHAvMj4oiSS+p2G9tV3HV7KqSk5azrH+I9ImKrbiynFrybbpH418AlEXGJpHo8DdL9qVSQdBHwKYr+VG4AvlXH3+aaXsW9lBq+irtuwz0i+sLazoBeAq6jODPiBGr4F9aF3pF0HHAS0LhX1qvEeso0Fven0ugPwL4+WwjYyK7irvtmmeauPKzHqxEljQD+DvhdRMyUNBw4JiK+W3Jp3U7Sz4CzIuKlsmspWzp77Hhg54j4pqShwA4RUW89hq5nY7iK2+EuzQIuo/jKGcBxwD9ExH6tvjBD6arMoRHxVNm1lCmdLTOG4uK2mu9DpCtJupziUvuDImL31J/5nRExbgMvzYakgyLiN6nJ8j0i4ufdXVNb1G2zTIXjgWnpEcB9aVxdkXQE8D1gU2C4pDHAN+sx0ICpZRdQQ/aOiL0aj79ExOuSNi27qG52IPAb1jVXVgqgJsO97vfcrSDpIYqbDjRUdJb1eESMLLcyK5OkByh6x5ydQn4AxZ57XV65vDGp+z339Mf6Wd572ttpZdVUknci4g1JlePebWnmnEnaB7gE2J3im0wP4M91eAYVwA8pLl56n6R/oTi3+2vlltS9JH2xtekR8W/dVUt71H24U5zPfS/wa9ad9laPnpB0PNBD0i7AWcCskmsqy6UUF+v8jOLMmZOAD5ZaUTeTNCQiXoiIGelb3cEUZ5MdRXGaaD3pW3YBHVH3zTKS5kbEmLLrKFvqfuCrwCcoPsS/ojineVWphZWgoj/3eRExOo2rq07UJP0eODQiFjUZfxrw1Yiot4Df6HjPvTh3dWJE3F52IWWKiLcowv2rZddSA95KBw3npot4XqL+usf+InCnpE9GxNMAkqZQXAfS7A08ciXpyxFxkaRLaObCx4g4q4SyNsh77sWVqltQnPL2DsVea9Rb+6qkDwLn8d5jD/XYWdZOwCsU7e3nAFsD/x4Rz5RaWDeTdDDFnYeOAs4AxgOfjIjXy6yru0n6OsU32dHA2xQZsVZEXFNGXRtS9+FuhdSv/RUU9w5de+whIh4qragSpQPtRMSSsmspk6QDKA6ozqK4qK0em+m+R3HG0O7APIrTpWcBsyLitTJra43DHUgXZuzC+t14/l95FXU/SQ9FxIfLrqNMKk4VOh84k6IZRsBqir52arJb165S0feSgM0ovtWuoU6/2QKkprqxFEG/b3osi4gRpRbWgrpvc5d0BnA2MJiio6h9gN9RnPNdT/5b0ucp9tIqr8qs2T2TLnAORdfP4yJiIYCknYHLJZ0TEReXWl03aux7ydbTB9iKoplua+CPFDfLrkl1v+cu6TGKm2PfHxFjJO0GfDsimr3UOFeSFjYzOiJi524vpiTpKsyPN+0kyxfu1DdJV1HcoGM58ABwP0Ve1PSxh7rfcwdWRcQqSUjaLN1mbdeyi+puETG87BpqQK/mej+MiCWS6rWHTIOhFE1TT1PcinIxsKzMgtrC4Q6LUzeevwDukvQ68FypFZVE0khgBOsfe6inPszf7uA0y1hEHJqOx+xB0d5+LjBS0msUvaieX2qBLaj7ZplKkg6kaEu7IyLq6sMs6XxgAkW43w4cBvw2Io4us67uJGkN8OfmJlF07+q99zonaTDFcZn9gMOB/hHRr9SiWlDX4S6pB/BEROxWdi1lS8ce9gQeiYg9JW0P/EdEfLzk0sxKJeksijDfj+KsoVkVj8cioib7YKrrZpmIWCPpKUlDI+L5susp2aqIeFfSaklbAa8CQ8ouyqwGDKPoZ+icjekGLnUd7sk2FJ1mPUjFV/J66cdc0mXATODBdOzhRxQXMq2gOCXUrK5FRKu9QtYqhzt8vewCSraA4p6Qgyj+uc0EPg5sFRHzyizMzDqurtvcm5K0HbC0Hm+MnPpTOTY9+lCE/PWNnUaZ2calbsM93ZDhQuA14FvAdcB2FJednxQRd5RYXqkkfQj4CTA6InqUXY+ZtV+9dWNa6VLg2xR7qL8BzoiIHYCPAt8ps7AySOop6QhJM4D/AZ4C6uoqXbOc1POe+9qbdEiaHxG7V0yrmxszSPo4cBwwEXgQuAG4JSKaO9/bzDYS9XxAtfLc1JVNptXTf7x/Aq4Hzq31vjLMrO3qec+98WpEURxAfKtxEr4a0cw2cnUb7mZmOavnA6pmZtlyuJuZZcjhblmS9FVJT0iaJ2mupL0lfUHS5h1Y1ooq6jhF0qCOvt6soxzulh1J+1J0x7pXRIwG/gp4AfgC0O5wr9IpFF07mHUrh7vlaCDwp4j4C0C6u9LRFCF7j6R7YP09cklHS5qeng+X9DtJj0m6oHLBkr4kaXb6RvCNNG6YpPmSfpS+LdwpqY+koyluqDwjfXvo0w3v3QxwuFue7gSGSFog6d8lHRgRP6S4ofHHIuJjG3j9NODyiBgFrO3iVdIngF2A8cAY4MOSPpom7wJcFhF7UNyC7dMRcTMwBzghIsZERNPrKcy6jMPdshMRK4APA5OBJcCNkk5pxyL2p+iWAoo+hxp9Ij0eAR4GdqMIdYCFETE3PX+Iog9ws9LU8xWqlrGIWAM0AA3pLlMnNzdbxfPerUxrJOA7EXHleiOlYcBfKkatobgwzqw03nO37EjaVdIuFaPGUNz0fDnQt2L8K5J2l7QJ8KmK8fdRdH0McELF+F8Bp0naMq1nR0nv20A5Tddp1i2852452hK4JN1ZajXwDEUTzXHAHZL+mNrdpwC3UTTdzEmvAzgbuF7SV4BbGhcaEXdK2h34nSQo7lZ1IsWeekumA1dIWgns63Z36y7ufsDMLENuljEzy5DD3cwsQw53M7MMOdzNzDLkcDczy5DD3cwsQw53M7MMOdzNzDL0/wdqo1lhbyuqAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot(kind=\"bar\", title=\"Scores on Midterm and Final Exams\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkDUlEQVR4nO3de7wVdb3/8ddbREFQSSQFAcG0vIFkXDI1Uc/PCxlU+jPvoJZlR8WOltTpl9SxvHRR834rsBQ1LeVYpzRil0e8gIqiYGiyVbwiioJCAn5+f8x3D8N2Xxabvdbam/1+Ph7rsWe+c/vMrNnrM/Odme8oIjAzMwPYqNoBmJlZ2+GkYGZmOScFMzPLOSmYmVnOScHMzHJOCmZmlnNSsA2KpH0l/aOJ4ZMknVfJmCpF0jhJ/7uO0zS5vdZxXjWSvtIa87LqcVJoZyTtI2mGpLclvSnpfknDqh1XuUmaKCkkja9XPj6VTwSIiPsi4hMlznOkpIVlCLfNkTQgbadlhc/j67K91nP5EyWtrLf8JeVerq07J4V2RNIWwN3AZcBWwHbAD4B/tfJyOrXm/FrRfOCEemVjU3nFSdq4GstdTz0ionv67FHhZd9aWHb3iOhR4eVbCZwU2pePA0TElIhYHRHLI+KeiHiibgRJX5U0T9JSSXMl7ZnKd0mn90skPSVpdGGaSZKukvRHSe8C+0vqI+kOSYskLZB0RmH84ZJmSXpH0muSft5YwCmeZ9NZzVRJfQrDQtLXJT2T4rpCkppY/5nAZpJ2S9PvBnRJ5XXzXOvoX9InJT2atsetaXwkdQP+B+hTOHLtI2kjSRMk/VPSYkm3SdoqTVN3tH2ypBeAv6Yqm/slXZzW4TlJn0nlL0p6XdLYJrbPiYXv6zlJX6u/LpLOSvN5RdKJheE90zZ9R9LDwMea2HaNLb/+9qqVdLakJ9LZ6K2S6rbZRyTdnfaJt1J333VdZgMxfEbSG5L6pf490vx3Tv1130fdPv3FwrTrtP0ljUrzWCrpJUlnr2/8GxonhfZlPrBa0mRJh0r6SHGgpP8LTCQ7mt4CGA0sltQZ+G/gHuCjwOnATZKK1QbHAD8CNgdmpPEfJzsbORA4U9LBadxLgUsjYguyH6LbGgpW0gHA+cCRQG/geeCWeqMdBgwDBqfxDqZpv2bN2cLY1N8gSZsAd6ZxtgJ+CxwOEBHvAocCLxeOXF8m2zZfAPYD+gBvAVfUm/V+wC6FWEcATwA9gZvTOg4DdgSOAy6X1L2RMF8n2wZbACcCFysl8mRbYEuy7+Fk4IrC934FsIJs256UPq3hSOAQYCDZ9zIulW8E/ArYHugPLAcuX9+FRcQM4BpgsqSuwG+A/xcRT6dR/gnsS7YdfgD8RlLvwizWZfvfAHwtIjYHdgf+ur7xb3Aiwp929CH7MZoELARWAVOBbdKwPwPjG5hmX+BVYKNC2RRgYuqeBNxYGDYCeKHePL4D/Cp1/53sn3PrZmK9Abio0N8dWAkMSP0B7FMYfhswoZF5TST7segPvAB0Tn/7pfK6dRkJLEzdnwVeBlSYzwzgvPrjFobPAw4s9PdOMW8MDEgx71AYPg54ptA/KI2zTaFsMTCkxO/3zrrvMMW3HNi4MPx14NNApxTXzoVhPwb+t5H51sW+pPA5u/42AGqB4wr9FwFXNzLPIcBbhf4a4CtNfH/v11v+9MLwzsAjwBzgT8XvrIF5zQbGtGT7p33ma8AWlfqfbW8fnym0MxExLyLGRURfsiOdPsAlaXA/sqOq+voAL0bEB4Wy58mOPuu8WOjenqxaZUndB/gusE0afjJZVdbTkmZKOqyRcPuk5dTFvozsH7S43FcL3e+RJY5GRcQLwLNkP4DPRMSLTYzeB3gp0q9B8nxjIyfbA78vrPc8YDVr1h3W3lYArxW6l6c465c1uF7pjO/BVL22BBgFbF0YZXFErCr0122jXmSJqhhLc+sGWSLvkT4/bWScBr8TSZtJukbS85LeITs46KHSr0HdVlh2j4jYv25ARKwkOzjZHfhZ8TuTdIKk2YXvZHfW3kbrsv0PJ9vGz0v6m6S9Soy9w3BSaMciO72eRPZPAtkPREP1yi8D/SQVv+/+wEvF2RW6XwQW1PsH3jwiRqXlPhMRR5NVRV0I3J7q6Bta7vZ1PWmcnvWW2xI3Amelv015BdhOWus6Rf9Cd0NNBL8IHFpv3btERGPbqsUkbQrcAfyU7Mi2B/BHoKnrKnUWkZ0p9iuU9W9k3NZyFvAJYERkVYefTeWlxNskSdsB55JVT/0sbRskbQ9cB5wG9Ezb6MmWLjMiZkbEGLJ9904aqfrsyJwU2hFJO6eLjn1Tfz/gaODBNMr1wNmSPqXMjumf6iGyI75vS+osaSTweT5cv1/nYWCppHMkdZXUSdLuSre+SjpOUq905rEkTfNBA/OZApwoaUj6J/8x8FBE1K7XhoBbgYNo/h/6AbIfzjPSen8JGF4Y/hrQU9KWhbKrgR+l7YakXpLGrGe8jdkE2JT0Ay/pULL1alZErAZ+B0xMR/C7kl1jKafNyY66lyi7+H5ua8w0Je1JZNWNJ5Ml8/9Kg7uRJeFFadwTWXMQtK7L2UTSsZK2TGcm79DwftuhOSm0L0vJ6vsfUnaX0INkR01nAUTEb8kuFt+cxr0T2Coi3idLAocCbwBXAifEmgt5a0k/OIeR1RkvSNNcT3ahD7KLkE9JWkZ20fmoiFjewHz+Avw/sqPhV8jOYo5anw2Q5rs8Iv7S0DLrjfc+8CWyeuc3gS+T/ZDWDX+aLHE9l6om+qT1mQrcI2kp2TYesb4xNxLfUuAMsuT2FtnF/qnrMIvTyKpFXiX7Uf1VK4dY3yVAV7L94UGyuv918WWt/ZzCMkkfJdsGHyW7uBxkF9xPlLRvRMwFfkaW4F8ju2Zw/3qsw/FAbar++jpw7HrMa4OktatbzcysI/OZgpmZ5ZwUzMws56RgZmY5JwUzM8u1xwa9cltvvXUMGDCg2mGYmbUrjzzyyBsR0auhYe06KQwYMIBZs2ZVOwwzs3ZFUqNPv7v6yMzMck4KZmaWc1IwM7Ncu76mYLZy5UoWLlzIihUrqh1Ku9ClSxf69u1L586dqx2KtVFOCtauLVy4kM0335wBAwagJl/aZhHB4sWLWbhwIQMHDqx2ONZGufrI2rUVK1bQs2dPJ4QSSKJnz54+q7ImlS0pSPplej/qk4WyrSTdq+ydvPfWvVYwNfP8C2Xv8n2i3usIzZrkhFA6bytrTjnPFCaRNbFcNAGYFhE7AdNSP2RNOu+UPqcAV5UxLjMza0TZrilExN8lDahXPIbsnbAAk8ne6XpOKr8xtaX+oKQeknpHxCvlis82TAMm/KFV51d7weeaHUcSxx57LL/5zW8AWLVqFb1792bEiBHcfffdTJ06lblz5zJhwoQPTdu9e3eWLVtGbW0tM2bM4JhjjmnV+M3WVaUvNG9T+KF/lTXvvd2Otd81uzCVfSgpSDqF7GyC/v3L/fZBs+Z169aNJ598kuXLl9O1a1fuvfdetttuzWuoR48ezejRo5ucR21tLTfffPM6JYVVq1ax8ca+V2RdtPZBQzWVcsDSElW70JzOCtb5DT8RcW1EDI2Iob16Ndh0h1nFjRo1ij/8IfvBmTJlCkcffXQ+bNKkSZx22mkALFiwgL322otBgwbxve99Lx9nwoQJ3HfffQwZMoSLL76Y1atX861vfYthw4YxePBgrrnmGgBqamrYd999GT16NLvuuis1NTXst99+jBkzhh122IEJEyZw0003MXz4cAYNGsQ///nPCm4F2xBUOim8Jqk3QPr7eip/ibVfQN6X9X+5u1nFHHXUUdxyyy2sWLGCJ554ghEjGn6D5/jx4zn11FOZM2cOvXv3zssvuOAC9t13X2bPns03v/lNbrjhBrbccktmzpzJzJkzue6661iwYAEAjz76KJdeeinz588H4PHHH+fqq69m3rx5/PrXv2b+/Pk8/PDDfOUrX+Gyyy4r/8rbBqXSSWEqa14uPha4q1B+QroL6dPA276eYO3J4MGDqa2tZcqUKYwaNarR8e6///78LOL4449vdLx77rmHG2+8kSFDhjBixAgWL17MM888A8Dw4cPXes5g2LBh9O7dm0033ZSPfexjHHTQQQAMGjSI2traVlg760jKViEpaQrZReWtJS0EzgUuAG6TdDLwPHBkGv2PwCjgWeA9shd3m7Uro0eP5uyzz6ampobFixc3Ol4pt4VGBJdddhkHH3zwWuU1NTV069ZtrbJNN900795oo43y/o022ohVq1atyyqYlfXuo6MbGXRgA+MG8O/lisWsEk466SR69OjBoEGDqKmpaXCcvffem1tuuYXjjjuOm266KS/ffPPNWbp0ad5/8MEHc9VVV3HAAQfQuXNn5s+fv9bFa7Ny8a0LtkEp1x0Zpejbty9nnHFGk+NceumlHHPMMVx44YWMGTMmLx88eDCdOnVijz32YNy4cYwfP57a2lr23HNPIoJevXpx5513lnkNzEDZQXr7NHTo0PBLdjq2efPmscsuu1Q7jHalI28z35KakfRIRAxtaJjbPjIzs5yTgpmZ5XxNwcw6jDM3vr3aIbSiDeyJZjMza3ucFMzMLOekYGZmOV9TsA3L9PNbd377f6fZUTp16sSgQYPy/jvvvJNjjjmGGTNmtGiR48aN47DDDuOII45o0fRm68NJwWw9de3aldmzZ69V1tKEYFZtrj4yK4Pu3bsDWVtFI0eO5IgjjmDnnXfm2GOPpe6B0R/+8IcMGzaM3XffnVNOOYX2/CCpbTicFMzW0/LlyxkyZAhDhgzhi1/84oeGP/bYY1xyySXMnTuX5557jvvvvx+A0047jZkzZ+Yv6Ln77rsrHbrZh7j6yGw9NVR9VDR8+HD69u0LwJAhQ6itrWWfffZh+vTpXHTRRbz33nu8+eab7Lbbbnz+85+vUNRmDXNSMCuzYtPWnTp1YtWqVaxYsYJvfOMbzJo1i379+jFx4kRWrFhRxSjNMh03KbT2XSrVVMIdMh+yoaz/tl+odgQtUpcAtt56a5YtW8btt9/uu42sTei4ScE2TC1JkFXQo0cPvvrVr7L77ruz7bbbMmzYsGqHZAY4KZitt2XLljVaNnLkSEaOHJmXX3755Xn3eeedx3nnnfehaSdNmtTqMZqVyncfmZlZzknBzMxyTgrW7vmhr9J5W1lznBSsXevSpQuLFy/2j10JIoLFixfTpUuXaodibZgvNFu71rdvXxYuXMiiRYuqHUq70KVLl/xBOrOGOClYu9a5c2cGDhxY7TDMNhiuPjIzs5yTgpmZ5Tps9dEl0+ZXO4RWc+b+1Y7AzDYUPlMwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPLOSmYmVmuKklB0jclPSXpSUlTJHWRNFDSQ5KelXSrpE2qEZuZWUdW8aQgaTvgDGBoROwOdAKOAi4ELo6IHYG3gJMrHZuZWUdXreqjjYGukjYGNgNeAQ4Abk/DJwNfqE5oZmYdV8WfaI6IlyT9FHgBWA7cAzwCLImIVWm0hcB2DU0v6RTgFID+/fuXP2CzDc3086sdQetoJ+/jbm+qUX30EWAMMBDoA3QDDil1+oi4NiKGRsTQXr16lSlKM7OOqRrVR/8GLIiIRRGxEvgdsDfQI1UnAfQFXqpCbGZmHVo1ksILwKclbSZJwIHAXGA6cEQaZyxwVxViMzPr0CqeFCLiIbILyo8Cc1IM1wLnAP8h6VmgJ3BDpWMzM+voqtJ0dkScC5xbr/g5YHgVwjEzs8RPNJuZWc5JwczMck4KZmaWc1IwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxyTgpmZpYr6R3NkoYC+wJ9gOXAk8C9EfFWGWMzM7MKa/JMQdKJkh4FvgN0Bf4BvA7sA/xF0mRJ/csfppmZVUJzZwqbAXtHxPKGBkoaAuwEvNDKcZmZWRU0mRQi4opmhs9u1WjMzKyqSrrQLOkiSVtI6ixpmqRFko4rd3BmZlZZpd59dFBEvAMcBtQCOwLfKldQZmZWHSXdfQR0Tn8/B/w2It6WVKaQzMps+vnVjqD17P+ddZ7kkmnzyxBI5Z25f7Uj2DCVmhT+W9LTZLejniqpF7CifGGZmVk1lFp9dC7wGWBoRKwE3gNGly0qMzOrilKTwgMR8WZErAaIiHeB/ylfWGZmVg1NVh9J2hbYDugq6ZNA3YWELcieYTAzsw1Ic9cUDgbGAX2BnxfKlwLfLVNMZmZWJc09vDYZmCzp8Ii4o0IxmZlZlZR699Hdko4BBhSniYgftmShknoA1wO7AwGcRNau0q1pGbXAkW5wz8ysskq90HwXMAZYBbxb+LTUpcCfImJnYA9gHjABmBYROwHTUr+ZmVVQqWcKfSPikNZYoKQtgc+SXasgIt4H3pc0BhiZRpsM1ADntMYyzcysNKWeKcyQNKiVljkQWAT8StJjkq6X1A3YJiJeSeO8CmzTSsszM7MSlXqmsA8wTtIC4F9kt6ZGRAxu4TL3BE6PiIckXUq9qqKICEnR0MSSTgFOAejf369yaKmO3NTBhrLu4KYerPWVmhQObcVlLgQWRsRDqf92sqTwmqTeEfGKpN5kL/P5kIi4FrgWYOjQoQ0mDjMza5nm3ry2Repc2shnnUXEq8CLkj6Rig4E5gJTgbGpbCzZxW0zM6ug5s4UbiZrLvsRsltHi02jBrBDC5d7OnCTpE2A54ATyRLUbZJOBp4HjmzhvM3MrIWae3jtsPR3YGsuNL2xbWgDgw5szeWYmdm6KfWaApJGk91KClATEXeXJyQzM6uWUl/HeQEwnqzufy4wXtKPyxmYmZlVXqlnCqOAIRHxAYCkycBjuFE8M7MNSqkPrwH0KHRv2cpxmJlZG1DqmcL5wGOSppPdgfRZ3DaRmdkGp6SkEBFTJNUAw8huRT0nPW9gZmYbkJLvPgL2ImvuItJ0vy9LRGZmVjWl3n10JfB1YA7wJPA1SVeUMzAzM6u8Us8UDgB2iYiA/O6jp8oWlZmZVUWpdx89CxSbJO2XyszMbANS6pnC5sA8SQ+TXVMYDsySNBUgIkaXKT4zM6ugUpPC98sahZmZtQlNJgVJiszfmhqn9cMyM7NqaO6awnRJp0ta6xVnkjaRdEC64Dy2kWnNzKydaa766BDgJGCKpIHAEqArWTK5B7gkIh4ra4RmZlYxzb1PYQVwJXClpM7A1sDyiFhSgdjMzKzCSn147WPARhHxCjBE0hmSepQ1MjMzq7hSn1O4A1gtaUfgWrLnFG4uW1RmZlYVpSaFDyJiFfAl4LKI+BbQu3xhmZlZNZSaFFZKOho4Aah7DWfn8oRkZmbVUmpSOJGsldQfRcSCdCfSr8sXlpmZVUOp71OYK+kcUvtHEbEAuLCcgZmZWeWVevfR54HZwJ9S/5C6do/MzGzDUWr10USyRvCWAETEbGCHskRkZmZVU/KF5oh4u17ZB60djJmZVVepraQ+JekYoJOknYAzgBnlC8vMzKqh1DOF04HdgH+RPbT2NnBmmWIyM7MqafZMQVIn4A8RsT/wn+UPyczMqqXZM4WIWA18IGnLCsRjZmZVVOo1hWXAHEn3Au/WFUbEGWWJyszMqqLUpPC79DEzsw1YqU80T5a0CfDxVPSPiFhZvrDMzKwaSkoKkkYCk4FaQEA/SWMj4u9li8zMzCqu1OqjnwEHRcQ/ACR9HJgCfKqlC053Nc0CXoqIw1Ije7cAPYFHgOMj4v2Wzt/MzNZdqc8pdK5LCAARMZ/1bzp7PDCv0H8hcHFE7Ai8BZy8nvM3M7N1VGpSmCXpekkj0+c6sqP8FpHUF/gccH3qF3AAcHsaZTLwhZbO38zMWqbUpHAqMJeseYszUvep67HcS4Bvs6b9pJ7AkvR2N4CFwHYNTSjpFEmzJM1atGjReoRgZmb1lZoUNgYujYgvRcSXgF8AnVqyQEmHAa9HxCMtmT4iro2IoRExtFevXi2ZhZmZNaLUpDAN6Fro7wr8pYXL3BsYLamW7MLyAcClQA9JdRe++wIvtXD+ZmbWQqUmhS4RsayuJ3Vv1pIFRsR3IqJvRAwAjgL+GhHHAtOBI9JoY4G7WjJ/MzNruVKTwruS9qzrkTQUWN7KsZwD/IekZ8muMdzQyvM3M7NmlPqcwpnAbyW9nPp7A19e34VHRA1Qk7qfI3u7m5mZVUmTZwqShknaNiJmAjsDtwIryd7VvKAC8ZmZWQU1V310DVD3VPFewHeBK8geLru2jHGZmVkVNFd91Cki3kzdXwaujYg7gDskzS5rZGZmVnHNnSl0KtwmeiDw18KwUq9HmJlZO9HcD/sU4G+S3iC72+g+AEk7kr2n2czMNiBNJoWI+JGkaWR3G90TEZEGbQScXu7gzMysspqtAoqIBxsom1+ecMzMrJpKfXjNzMw6ACcFMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxyTgpmZpZzUjAzs5yTgpmZ5ZwUzMws56RgZmY5JwUzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4KZmeWcFMzMLOekYGZmuYonBUn9JE2XNFfSU5LGp/KtJN0r6Zn09yOVjs3MrKOrxpnCKuCsiNgV+DTw75J2BSYA0yJiJ2Ba6jczswqqeFKIiFci4tHUvRSYB2wHjAEmp9EmA1+odGxmZh1dVa8pSBoAfBJ4CNgmIl5Jg14FtmlkmlMkzZI0a9GiRZUJ1Mysg6haUpDUHbgDODMi3ikOi4gAoqHpIuLaiBgaEUN79epVgUjNzDqOqiQFSZ3JEsJNEfG7VPyapN5peG/g9WrEZmbWkVXj7iMBNwDzIuLnhUFTgbGpeyxwV6VjMzPr6DauwjL3Bo4H5kiancq+C1wA3CbpZOB54MgqxGZm1qFVPClExP8CamTwgZWMxczM1uYnms3MLOekYGZmOScFMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxyTgpmZpZzUjAzs5yTgpmZ5ZwUzMws56RgZmY5JwUzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCzXppKCpEMk/UPSs5ImVDseM7OOps0kBUmdgCuAQ4FdgaMl7VrdqMzMOpY2kxSA4cCzEfFcRLwP3AKMqXJMZmYdiiKi2jEAIOkI4JCI+ErqPx4YERGn1RvvFOCU1PsJ4B8VDXTdbQ28Ue0gqsTr3nF15PVvD+u+fUT0amjAxpWOZH1FxLXAtdWOo1SSZkXE0GrHUQ1e94657tCx17+9r3tbqj56CehX6O+byszMrELaUlKYCewkaaCkTYCjgKlVjsnMrENpM9VHEbFK0mnAn4FOwC8j4qkqh9Ua2k1VVxl43Tuujrz+7Xrd28yFZjMzq762VH1kZmZV5qRgZmY5J4V6JK2WNFvS45IelfSZMi5rWbnmva4kTZd0cL2yMyVdVa2Yqq2wLzyV9oezJLX4f0bS9c09pS+pRlKbup2xuJ9KGiVpvqTtWzCfGa0bWXlIuljSmYX+P0u6vtD/M0nfr2uKR9JESWen7h9K+reKB92K2syF5jZkeUQMAUg/kucD+xVHkLRxRKyqQmzlNIXsjq8/F8qOAr5dnXDahOK+8FHgZmAL4NyWzKzuwcz2StKBwC+AgyPi+XWdPiLKdoDVyu4HjgQuSQcBW5N973U+A3wzIh6sP2FEfL8yIZaPzxSatgXwFoCkkZLukzQVmJvK7pT0SDqSrHvKGknLJP0oHV0+KGmbVD5Q0gOS5kg6rzC+JP1E0pNp2JcLy6yRdLukpyXdJEllWtfbgc+l24GRNADoQ9YG1ay0jj8oxFwr6QfpbGqOpJ1TeTdJv5T0sKTHJI1J5bulstmSnpC0Uxr3D2k7PVlY7+9LmpnKri3jOpcsIl4ne5L+tPR9DUj7w6PFM8qmvrPiWYCkg9K+8Kik30rqXr21a56kzwLXAYdFxD9T2XGF7/QaSZ0kfV3STwrTjZN0eepelv5Wcr9uiRnAXql7N+BJYKmkj0jaFNgFGFy3XkWSJilrnaHR/Tit+8Xp/2qepGGSfifpmeLvQtVEhD+FD7AamA08DbwNfCqVjwTeBQYWxt0q/e1KtuP0TP0BfD51XwR8L3VPBU5I3f8OLEvdhwP3kt2Kuw3wAtA7LfNtsgf5NgIeAPYp47rfDYxJ3ROAnxbWsRNQAwxO/bXA6an7G8D1qfvHwHGpuwcwH+gGXAYcm8o3SdvscOC6wvK3LG7X1P3rum1ZhX1hWQNlS9J3tBnQJZXtBMwq7CcNfmdp+w0lO/L8O9AtlZ8DfL84TrX/D+qt80rgzbrvPpXtAvw30Dn1XwmcAPQia8Osbrz/Kax/3f5e0f26heu8AOgPfA34OvBfwChgb+A+YBxweRp3InB26p4EHNHUfpy+4wtT93jgZbL/902BhaTfkWp9fKbwYcsjYkhE7AwcAtxYOIp5OCIWFMY9Q9LjwINkT2PvlMrfJ/uBBXgEGJC69yarpoFsJ6mzDzAlIlZHxGvA34BhhWUujIgPyJLVAMqnrgqJ9HcKcKSkR4HHyI6ainXiv0t/i+t4EDBB0myynb8L2T/XA8B3JZ1D1u7KcmAO8H8kXShp34h4O81jf0kPSZoDHJCW29Z0Bq5LMf6WtbdLc9/Zp9P496ftNBZY5zr6ClpJdvR8cqHsQOBTwMy0DgcCO0TEIuA5SZ+W1BPYmaw6pr5K7tctMYOsmugzZPvuA4X+htanIU3tx3UP5s4BnoqIVyLiX8BzrN2yQ8X5mkITIuIBSVuTHf1AdqYAZKfAwL8Be0XEe5JqyH4AAVZGOgwgO/Mobud1fTDkX4Xu+vNqbXcBF0vak+xI+E3gbGBYRLwlaRJr1rEYWzEuAYdHRP2GCudJegj4HPBHSV+LiL+mZY0CzpM0jezM6kqyo+UXJU2st8yqkbQD2bq+TnZd4TVgD7Kj3RWFUZv7zgTcGxFHly/aVvUBWR37NEnfjYgfk63D5Ij4TgPj35LGfxr4feF/oaiS+3VL3E+WAAaR1QK8CJwFvAP8CtiqqYkldaHp/bhu/T9g7W3xAVXeFj5TaEKqJ+8ELG5g8JbAWykh7Ex29Nec+1lzJH5sofw+4MupTrYX8Fng4ZZH3jIRsQyYDvyS7CxhC7JE+Lay6yKHljCbPwOnF+pPP5n+7gA8FxG/IEs+gyX1Ad6LiN8APwH2ZM0/zhupnv2I1lq/9ZG+l6vJqgyC7Pt/JR3pHk+2n5TqQWBvSTumeXeT9PHWjrk1RcR7ZAn9WEknA9OAI5RdgEfSVlpzR9LvyZq9P5osQbRHM4DDgDfTGfybZNWhe6VhzWmT+3Ep2lp2bgu6ptNhyI6GxkbE6gaug/0J+LqkeWTNd3/oToQGjAduTlUodxXKf0+2sz1Odibx7Yh4NSWbSpuS4jkqIp6W9BjZEd+LlHba/F/AJcATyu7cWED2z3UkcLyklcCrZNcehgE/kfQBWRXFqRGxRNJ1ZEdnr5K1iVUtdftCZ2AVWZXfz9OwK4E7JJ1Ati+82+AcGhARiySNA6akC5cA3yO7/tJmRcSbkg4hux4ynizme9L3vJLsOtnz6axyHrBrRFT84KaVzCG79nNzvbLuEfFGc9fF29h+vE7czIWZmeVcfWRmZjknBTMzyzkpmJlZzknBzMxyTgpmZpZzUjArkPSfytp5eiK16TNCWWuxm7VgXi1uBTe1GdSnpdObtZSTglkiaS+yZyr2jIjBZE+svwicSfaEdyWNI2uQ0KyinBTM1ugNvJHaoCEi3iB7ErUPMF3SdPjQ+wWOSM1/NNoKbhr2rdRi5hNKrc0qa2l1nqTr0tnJPZK6plY2hwI3pbOVrhVYdzPAScGs6B6gn7KXyFwpab/ULMfLwP4RsX8z018KXBURg4BX6golHUTWWOJwYAjwKWVNUZPKr4iI3chaYD08Im4HZpG1KjskNR5oVhFOCmZJavvpU2TvTVgE3JqaoyhVY63gHpQ+jwGPkrUcWtei7oKImJ26i63NmlWF2z4yK4iI1WRNftekJo/HNjRaobt+C64NtRsj4PyIuGatwuxFRvVbC3VVkVWVzxTMEkmfkLRToWgI8DywFNi8UP6apF1SQ3BfLJQ31grun4GTUmuZSNqurnXRJtRfpllF+EzBbI3uwGWSepC1ivosWVXS0cCfJL2critMIHuJ0iKyuv+6V2k22ApuRNwjaRfggdS65jLgOLIzg8ZMAq6WtJzsnR2+rmAV4VZSzcws5+ojMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCz3/wFxj7P7yUj3agAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.bar(x=df.index, height=df[\"Midterm\"])\n", "plt.bar(x=df.index, height=df[\"Final\"], alpha=0.5)\n", "plt.legend([\"Midterm\", \"Final\"])\n", "plt.title(\"Scores on Midterm and Final Exams\")\n", "plt.xlabel(\"Student\")\n", "plt.ylabel(\"Scores(points)\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StudentExamScore
0BrandonMidterm85
1VanessaMidterm60
2DanielMidterm60
3KevinMidterm65
4WiliamMidterm100
5BrandonFinal90
6VanessaFinal90
7DanielFinal65
8KevinFinal80
9WiliamFinal95
\n", "
" ], "text/plain": [ " Student Exam Score\n", "0 Brandon Midterm 85\n", "1 Vanessa Midterm 60\n", "2 Daniel Midterm 60\n", "3 Kevin Midterm 65\n", "4 Wiliam Midterm 100\n", "5 Brandon Final 90\n", "6 Vanessa Final 90\n", "7 Daniel Final 65\n", "8 Kevin Final 80\n", "9 Wiliam Final 95" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "melt_df = df.reset_index().melt(id_vars=\"Student\", var_name=\"Exam\", value_name=\"Score\")\n", "melt_df" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAF+CAYAAAD0jt8nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAl10lEQVR4nO3debgkdX3v8fdHFgHZcULYBjCioKIIA4q4oOQqIBETvQhBWUKC5iqicSPGi2hc4x5FI26DUXFXiPEKBkEJ+yrDpiL7DrIISpTle/+o35HmeGamZ+b06Zma9+t5+jm1ddW3qvv0p39V1VWpKiRJ6qtHjLsASZJGyaCTJPWaQSdJ6jWDTpLUawadJKnXDDpJUq8ZdFqqJXlWkp8tYPzcJO+ayZpmSpIDkvz3Ij5ngdtrEed1cpK/nY55SeNk0I1ZkmcmOS3JXUluT3Jqku3HXdeoJTkiSSU5dNLwQ9vwIwCq6pSqevyQ89w5yXUjKHepk2Sztp3uGXj8dFG21xIu/4gk901a/p2jXq60OAy6MUqyJvA94OPAusBGwDuA303zclaYzvlNo58D+00atn8bPuOSrDiO5S6htatq9fZ4ygwv+2sDy169qtae4eVLQzHoxutxAFV1TFU9UFX3VtUJVXXhxARJ/i7JpUnuTnJJkm3b8K3arqU7k1yc5EUDz5mb5FNJvp/kN8Bzk2yY5FtJbk1yZZLXDky/Q5Jzkvw6yc1JPjy/gls9l7fW53FJNhwYV0leleQXra4jk2QB6382sFqSJ7bnPxFYpQ2fmOfDWmlJnprkvLY9vtamJ8mjgP8HbDjQwtgwySOSHJbkl0l+leTrSdZtz5loFR2U5BrgR2134alJPtLW4Yokz2jDr01yS5L9F7B9Dhx4va5I8srJ65LkDW0+NyY5cGD8em2b/jrJWcCfLWDbzW/5k7fXVUnemOTCttfga0kmttk6Sb7X3hN3tO6NF3WZU9TwjCS3Jdmk9T+lzX/L1j/xeky8p/9y4LmLtP2T7N7mcXeS65O8cUnrV/8YdOP1c+CBJEcn2S3JOoMjk/xv4Ai6Vs+awIuAXyVZCfgP4ATgT4BDgC8nGdxl9dfAu4E1gNPa9D+lazXuArwuyQvatB8DPlZVa9J9uH59qmKTPA94L7AXsAFwNfDVSZPtAWwPPLlN9wIW7N95qFW3f+ufUpKVge+2adYFvgG8BKCqfgPsBtww0MK4gW7bvBh4DrAhcAdw5KRZPwfYaqDWpwEXAusBX2nruD3wWODlwCeSrD6fMm+h2wZrAgcCH0n7ctL8KbAW3etwEHDkwOt+JPA/dNv2b9pjOuwF7ApsTve6HNCGPwL4ArApMBu4F/jEki6sqk4DPg0cnWRV4EvA/62qy9okvwSeRbcd3gF8KckGA7NYlO3/OeCVVbUG8CTgR0tav3qoqnyM8UH3ATsXuA64HzgOWL+NOx44dIrnPAu4CXjEwLBjgCNa91zgiwPjngZcM2ke/wh8oXX/hO4D59ELqfVzwL8M9K8O3Ads1voLeObA+K8Dh81nXkfQfQDOBq4BVmp/N2nDJ9ZlZ+C61v1s4AYgA/M5DXjX5GkHxl8K7DLQv0GreUVgs1bzYwbGHwD8YqB/6zbN+gPDfgVsM+Tr+92J17DVdy+w4sD4W4CnAyu0urYcGPce4L/nM9+J2u8ceLxx8jYArgJePtD/L8C/zWee2wB3DPSfDPztAl6/309a/kkD41cCzgXmAT8YfM2mmNcFwJ6Ls/3be+aVwJoz9T/rY9l72KIbs6q6tKoOqKqN6b6Rbgh8tI3ehO7b72QbAtdW1YMDw66mayVMuHage1O6XXp3TjyAtwLrt/EH0e1GvSzJ2Un2mE+5G7blTNR+D92HzuBybxro/i1dGM5XVV0DXE73of6Lqrp2AZNvCFxfVYNXIr96fhM3mwLfGVjvS4EHeGjd4eHbCuDmge57W52Th025Xq1lfkbbtXsnsDvw6IFJflVV9w/0T2yjWXThO1jLwtYNui8na7fHB+czzZSvSZLVknw6ydVJfk33hWftDH9M9+sDy167qp47MaKq7qP7wvUk4EODr1mS/ZJcMPCaPImHb6NF2f4vodvGVyf5cZIdh6xdyxGDbilS3a6duXT/+NB96E11nOYGYJMkg6/fbOD6wdkNdF8LXDnpQ2mNqtq9LfcXVbUP3W7Q9wPfbMe8plruphM9bZr1Ji13cXwReEP7uyA3AhslDzvuN3uge6pbcVwL7DZp3Vepqvltq8WW5JHAt4AP0rVA1ga+DyzoOOWEW+la9JsMDJs9n2mnyxuAxwNPq2639bPb8GHqXaAkGwFvp9s1+qG2bUiyKfAZ4DXAem0bXbS4y6yqs6tqT7r37neZz253Ld8MujFKsmU7MWHj1r8JsA9wRpvks8Abk2yXzmPbB8WZdN/M35xkpSQ7A3/BHx8vm3AWcHeStyRZNckKSZ6U9jOGJC9PMqu1EO9sz3lwivkcAxyYZJv2wfUe4MyqumqJNgR8DXg+C/+QOp0uDF7b1vuvgB0Gxt8MrJdkrYFh/wa8u203ksxKsucS1js/KwOPpIVWkt3o1muhquoB4NvAEa2l9QS6Y5ajtAZd6+jOdCfovH06Ztq+iMyl29V9EN0XlH9uox9F98Xi1jbtgTz0xW5Rl7Nykn2TrNVakL9m6vetlnMG3XjdTXf87Mx0Z0eeQfft9g0AVfUNuhNKvtKm/S6wblX9ni7YdgNuAz4J7FcPHex/mPYhugfdMZgr23M+S3cyAHQnKlyc5B66E1P2rqp7p5jPfwH/l67VciNda3PvJdkAbb73VtV/TbXMSdP9HvgruuM4twMvowuHifGX0YXxFW232IZtfY4DTkhyN902ftqS1jyf+u4GXksX2HfQnRB03CLM4jV0u+RuoguKL0xziZN9FFiV7v1wBt2xtEXxsjz8d3T3JPkTum3wJ3QnoBTdSTkHJnlWVV0CfIjuS8vNdMfgTl2CdXgFcFXb9foqYN8lmJd6Kg8/3CFJUr/YopMk9ZpBJ0nqNYNOktRrBp0kqdeWxYvY/sGuu+5aP/jBop4oJklLvSX+LaMesky36G677bZxlyBJWsot00EnSdLCGHSSpF4z6CRJvWbQSZJ6zaCTJPWaQSdJ6jWDTpLUawadJKnXDDpJUq8ZdJKkXjPoJEm9NrKgS/L5JLckuWhg2LpJfpjkF+3vOm14kvxrksuTXJhk21HVJUlavoyyRTcX2HXSsMOAE6tqC+DE1g+wG7BFexwMfGqEdUmSliMjC7qq+glw+6TBewJHt+6jgRcPDP9idc4A1k6ywahqkyQtP2b6fnTrV9WNrfsmYP3WvRFw7cB017VhNzJJkoPpWn3Mnj17dJVKWmpt96YvjnwZ535gv5EvQzNjbCejVFUBtRjPO6qq5lTVnFmzZo2gMklSn8x00N08sUuy/b2lDb8e2GRguo3bMEmSlshMB91xwP6te3/g2IHh+7WzL58O3DWwi1OSpMU2smN0SY4BdgYeneQ64O3A+4CvJzkIuBrYq03+fWB34HLgt8CBo6pLkrR8GVnQVdU+8xm1yxTTFvDqUdUiSVp+eWUUSVKvGXSSpF4z6CRJvWbQSZJ6zaCTJPWaQSdJ6jWDTpLUawadJKnXDDpJUq/N9G16JGmZcM07tx75MmYfPm/ky5AtOklSzxl0kqReM+gkSb1m0EmSes2gkyT1mkEnSeo1g06S1GsGnSSp1ww6SVKvGXSSpF4z6CRJvWbQSZJ6zaCTJPWaQSdJ6jVv07OYltdbeCyv6y1p2WWLTpLUawadJKnXDDpJUq8ZdJKkXjPoJEm9ZtBJknrNoJMk9ZpBJ0nqNYNOktRrBp0kqdcMOklSrxl0kqReM+gkSb1m0EmSes2gkyT1Wi/vR7fdm7448mV8Z42RL0KSNA1s0UmSes2gkyT1mkEnSeo1g06S1GsGnSSp1ww6SVKvGXSSpF4z6CRJvWbQSZJ6zaCTJPWaQSdJ6rWxBF2S1ye5OMlFSY5JskqSzZOcmeTyJF9LsvI4apMk9cuMB12SjYDXAnOq6knACsDewPuBj1TVY4E7gINmujZJUv+Ma9flisCqSVYEVgNuBJ4HfLONPxp48XhKkyT1yYzfpqeqrk/yQeAa4F7gBOBc4M6qur9Ndh2w0VTPT3IwcDDA7NmzR1+wtJy75p1bj3wZsw+fN/JlaPk1jl2X6wB7ApsDGwKPAnYd9vlVdVRVzamqObNmzRpRlZKkvhjHrss/B66sqlur6j7g28BOwNptVybAxsD1Y6hNktQz4wi6a4CnJ1ktSYBdgEuAk4CXtmn2B44dQ22SpJ6Z8aCrqjPpTjo5D5jXajgKeAvwD0kuB9YDPjfTtUmS+mfGT0YBqKq3A2+fNPgKYIcxlCNJ6jGvjCJJ6jWDTpLUawadJKnXDDpJUq8ZdJKkXjPoJEm9ZtBJknrNoJMk9ZpBJ0nqNYNOktRrBp0kqdcMOklSrxl0kqReM+gkSb1m0EmSes2gkyT1mkEnSeo1g06S1GsGnSSp1ww6SVKvGXSSpF4z6CRJvWbQSZJ6zaCTJPWaQSdJ6jWDTpLUawadJKnXDDpJUq8ZdJKkXjPoJEm9ZtBJknrNoJMk9ZpBJ0nqNYNOktRrBp0kqdcMOklSrxl0kqReM+gkSb1m0EmSes2gkyT12orjLkBaVlzzzq1HOv/Zh89b5Ods96YvjqCSh/vOGiNfhDRStugkSb1m0EmSes2gkyT1mkEnSeo1g06S1GtDnXWZZA7wLGBD4F7gIuCHVXXHCGuTJGmJLbBFl+TAJOcB/wisCvwMuAV4JvBfSY5OMnv0ZUqStHgW1qJbDdipqu6damSSbYAtgGumuS5JkqbFAoOuqo5cyPgLprUaSZKm2VAnoyT5lyRrJlkpyYlJbk3y8lEXJ0nSkhr2rMvnV9WvgT2Aq4DHAm8aVVGSJE2XYYNupfb3hcA3ququJVlokrWTfDPJZUkuTbJjknWT/DDJL9rfdZZkGZIkwfBB9x9JLgO2A05MMgv4nyVY7seAH1TVlsBTgEuBw4ATq2oL4MTWL0nSEhk26N4OPAOYU1X3Ab8FXrQ4C0yyFvBs4HMAVfX7qroT2BM4uk12NPDixZm/JEmDhr1Nz+lVte1ET1X9JskpwLYLeM78bA7cCnwhyVOAc4FDgfWr6sY2zU3A+lM9OcnBwMEAs2f7E77JRn3blqX1li3erkbS/CzsB+N/mmQ7YNUkT02ybXvsTPcbu8WxIl1Afqqqngr8hkm7KauqgJrqyVV1VFXNqao5s2bNWswSJEnLi4W16F4AHABsDHx4YPjdwFsXc5nXAddV1Zmt/5t0QXdzkg2q6sYkG9BdgUWSpCWysB+MHw0cneQlVfWt6VhgVd2U5Nokj6+qnwG7AJe0x/7A+9rfY6djeZKk5duwx+i+l+Svgc0Gn1NV71zM5R4CfDnJysAVwIF0u1G/nuQg4Gpgr8WctyRJfzBs0B0L3EV34sjvlnSh7dJhc6YYtcuSzluSpEHDBt3GVbXrSCuRJGkEhv0d3WlJth5pJZIkjcCwLbpnAgckuZJu12XofgXw5JFVJknSNBg26HYbaRWSJI3IAoMuyZrtrgV3z1A9kiRNq4W16L5Cd2uec+muVJKBcQU8ZkR1SZJmSJIHgHkDg75aVe8bVz3TbWE/GN+j/d18ZsqRJI3BvVW1zbiLGJVhz7okyYuSfLA99hhlUZKk8UqyVpKfJXl86z8myd+17k8lOSfJxUneMfCcq5K8N8kFbfy2SY5P8sskrxrXugwVdEneR3eHgYlLdR2a5D2jLEySNGNWbeE08XhZu8H2a4C5SfYG1qmqz7Tp/6mq5gBPBp6TZPAM/Gta6/AUYC7wUuDpwDsYk2HPutwd2KaqHgRIcjRwPot/YWdJ0tJjyl2XVfXDJP8bOJLuJtkT9mq3TFsR2AB4AnBhG3dc+zsPWL2q7gbuTvK7JGu3+4/OqKF3XQJrD3SvNc11SJKWMkkeAWxFd7PtddqwzYE3Aru031L/J7DKwNMmLhP5IA+/ZOSDDN+4mlbDBt17gfOTzG2tuXOBd4+uLEnSUuD1wKXAX9PdLHslYE26+4jelWR9loHfWQ+VrlV1TJKTge3pflbwlqq6aZSFSZJmzKpJLhjo/wHwBeBvgR2q6u4kPwHeVlVvT3I+cBlwLXDqjFe7iBalGbkj3aXAqj3vOyOpSJI0o6pqhfmM2mpgmn8Y6D5gPvPZbKB7Lt3JKH80bqYNe9blJ4FX0R1cvAh4ZZIjR1mYJEnTYdgW3fOAraqq4A9nXV48sqokSZomw56Mcjkwe6B/kzZMkqSl2rAtujWAS5OcRXeMbgfgnCTHAVTVi0ZUnyRJS2TYoDt8pFVIkjQiC7tNT6rz4wVNM/1lSZI0PRZ2jO6kJIckGTw+R5KVkzyvnZSy/+jKkySNU5JK8qWB/hWT3Jrke63/RUkOm89z72l/N0vy1zNT8R9b2K7LXYG/AY5pl325E1iVLiBPAD5aVeePtEJJEgDbvemLNZ3zO/cD+w2zR+43wJOSrFpV9wL/C7h+YmRVHcdD17ecn83orq7ylWFrS7JiVd0/7PQLssAWXVX9T1V9sqp2AjYFdgGeWlWbVtXfGXKStFz4PvDC1r0PcMzEiCQHJPlE6948yelJ5iV518Dz3wc8q90Z4fVJVkjygSRnJ7kwySvb83dOcko70fGS1v/jJMcmuSLJ+5Lsm+Sstow/G6b4YX8w/mfAI6rqRmCbJK9NsvYwz5UkLfO+CuydZBW6W/OcOZ/pPgZ8qqq2Bm4cGH4YcEpVbVNVHwEOAu6qqu3pLi35d22vIcC2wKFV9bjW/xS6C5ZsBbwCeFxV7QB8FjhkmOKH/R3dt4AHkjwWOIrud3RDN0ElScuuqrqQbvfjPnStu/nZiYdae/++gOmeD+zXrq95JrAesEUbd1ZVXTkw7dlVdWNV/Q74Jd1hM+iu1LXZMPUP+/OCB6vq/iR/BXy8qj7eLuopSVo+HAd8ENiZLpjmZ5jjiAEOqarjHzYw2ZnumOCgybf6GbwN0FAZNmyL7r4k+wD7Ad9rw1Ya8rmSpGXf54F3VNW8BUxzKrB36953YPjddBcemXA88Pfttj8keVySR01nsYOGDboD6e5e8O6qurLtS11Qs1SS1CNVdV1V/etCJjsUeHWSecBGA8MvpDv89dMkr6c7vnYJcF6Si4BPM8Kbsg57P7pLkryFdr3Ltv/0/aMqSpL0x4b8OcC0qqrVpxh2MnBy655Lux1Py4YdByZ9Wxt+H93NAQa9tT0G/WG+k5fT+nee37gFGfasy78ALqC7GR9Jtpm4zqUkSUuzYXddHkF3Iec7AarqAuAxI6lIkqRpNPTJKFV116RhD053MZIkTbdhD/5d3K5TtkKSLYDXAqeNrixJkqbHsC26Q4An0v1+4SvAXcDrRlSTJEnTZqEtuiQrAP9ZVc8F/mn0JUmSNH0W2qKrqgeAB5OsNQP1SJKWIkkeaBdjnnhslmSxD10lmZvkpdNZ48IMe4zuHmBekh8ycHmWqnrtSKqSJP2Ra9659bTepmf24fOG+V3evVW1zaRhz5jOOkZt2KD7dntIkpZzSe6pqtXbtSmPAG4DngScC7y8qirJ4cBf0N3D9DTglVU1rUE9rGGvjHJ0kpWBidsm/Kz90l2S1G+rtrsMAFxZVX85afxT6U5WvIHuWpc7Af8NfKKq3gmQ5N+BPYD/mJGKJxkq6FpqHw1cRXfV6U2S7F9VPxlZZZKkpcFUuy4HnVVV1wG0QNyMLuiem+TNwGrAusDFLM1BB3wIeH5V/Qy6K03T3XNou1EVJklaJgzeRucBYMV2g9ZPAnOq6tokRwCrjKM4GP53dCtNhBxAVf0cb9MjSZraRKjdlmR1YEbPspxs2BbdOUk+C3yp9e8LnDOakiRJy7KqujPJZ4CLgJuAs8dZz7BB9/fAq+ku/QVwCl2zVJI0Q4b8OcC0ms9telZvf0/m4bfRec1A99tot+mZ9NwDRlDmAg0bdCsCH6uqD8MfrpbyyJFVJUnSNBn2GN2JdL+FmLAq8F/TX44kSdNr2KBbparumehp3auNpiRJkqbPsEH3myTbTvQkmQPcO5qSJEmaPsMeo3sd8I0kN7T+DYCXjaQiSZKm0QJbdEm2T/KnVXU2sCXwNeA+4AfAlTNQnyRJS2Rhuy4/Dfy+de8IvBU4ErgDOGqEdUmSNC0Wtutyhaq6vXW/DDiqqr4FfGvgIp+SJC21FtaiWyHJRBjuAvxoYNywx/emlGSFJOcn+V7r3zzJmUkuT/K1drcESZKWyMKC7hjgx0mOpTvL8hSAJI8F7lrCZR8KXDrQ/37gI1X1WLpdowct4fwlSVpw0FXVu4E3AHOBZw7cNO8RwCGLu9AkGwMvBD7b+gM8D/hmm+Ro4MWLO39JkiYsdPdjVZ0xxbCfL+FyPwq8GVij9a8H3FlV97f+64CNpnpikoOBgwFmz569hGVIkvpu2B+MT5skewC3VNW5i/P8qjqqquZU1ZxZs2ZNc3WSpL5ZohNKFtNOwIuS7E53z6I1gY8BaydZsbXqNgauH0NtkqSemfEWXVX9Y1VtXFWbAXsDP6qqfYGTeOjmfPsDx850bZKk/pnxoFuAtwD/kORyumN2nxtzPZKkHhjHrss/GLxpX1VdAewwznokSf2zNLXoJEmadgadJKnXDDpJUq8ZdJKkXjPoJEm9ZtBJknrNoJMk9ZpBJ0nqNYNOktRrBp0kqdcMOklSrxl0kqReM+gkSb1m0EmSes2gkyT1mkEnSeo1g06S1GsGnSSp1ww6SVKvGXSSpF4z6CRJvWbQSZJ6zaCTJPWaQSdJ6jWDTpLUawadJKnXDDpJUq8ZdJKkXjPoJEm9ZtBJknrNoJMk9ZpBJ0nqNYNOktRrBp0kqdcMOklSrxl0kqReM+gkSb1m0EmSes2gkyT1mkEnSeo1g06S1GsGnSSp1ww6SVKvGXSSpF4z6CRJvWbQSZJ6zaCTJPWaQSdJ6jWDTpLUawadJKnXDDpJUq8ZdJKkXpvxoEuySZKTklyS5OIkh7bh6yb5YZJftL/rzHRtkqT+GUeL7n7gDVX1BODpwKuTPAE4DDixqrYATmz9kiQtkRkPuqq6sarOa913A5cCGwF7Ake3yY4GXjzTtUmS+mesx+iSbAY8FTgTWL+qbmyjbgLWH1ddkqT+GFvQJVkd+Bbwuqr69eC4qiqg5vO8g5Ock+ScW2+9dQYqlSQty8YSdElWogu5L1fVt9vgm5Ns0MZvANwy1XOr6qiqmlNVc2bNmjUzBUuSllnjOOsywOeAS6vqwwOjjgP2b937A8fOdG2SpP5ZcQzL3Al4BTAvyQVt2FuB9wFfT3IQcDWw1xhqkyT1zIwHXVX9N5D5jN5lJmuRJPWfV0aRJPWaQSdJ6jWDTpLUawadJKnXDDpJUq8ZdJKkXjPoJEm9ZtBJknrNoJMk9ZpBJ0nqNYNOktRrBp0kqdcMOklSrxl0kqReM+gkSb1m0EmSes2gkyT1mkEnSeo1g06S1GsGnSSp1ww6SVKvGXSSpF4z6CRJvWbQSZJ6zaCTJPWaQSdJ6jWDTpLUawadJKnXDDpJUq8ZdJKkXjPoJEm9ZtBJknrNoJMk9ZpBJ0nqNYNOktRrBp0kqdcMOklSrxl0kqReM+gkSb1m0EmSes2gkyT1mkEnSeo1g06S1GsGnSSp1ww6SVKvGXSSpF4z6CRJvWbQSZJ6zaCTJPWaQSdJ6jWDTpLUawadJKnXDDpJUq8tVUGXZNckP0tyeZLDxl2PJGnZt9QEXZIVgCOB3YAnAPskecJ4q5IkLeuWmqADdgAur6orqur3wFeBPcdckyRpGZeqGncNACR5KbBrVf1t638F8LSqes2k6Q4GDm69jwd+NqOFPuTRwG1jWvY4La/rDcvvurveM++2qtp1TMvunRXHXcCiqqqjgKPGXUeSc6pqzrjrmGnL63rD8rvurreWdUvTrsvrgU0G+jduwyRJWmxLU9CdDWyRZPMkKwN7A8eNuSZJ0jJuqdl1WVX3J3kNcDywAvD5qrp4zGUtyNh3n47J8rresPyuu+utZdpSczKKJEmjsDTtupQkadoZdJKkXltugi7JA0kuSPLTJOclecYIl3XPqOa9qJKclOQFk4a9LsmnxlXTOA28Dy5u74U3JFns/4Mkn13YFXySnJxkqThNffC9mWT3JD9PsulizOe06a1seiX5SJLXDfQfn+SzA/0fSnL4xKUGkxyR5I2t+51J/nzGi9bILDUno8yAe6tqG4D2wf9e4DmDEyRZsaruH0Nto3QM3Rmsxw8M2xt483jKGbvB98GfAF8B1gTevjgzm7jAwbImyS7AvwIvqKqrF/X5VTWyL4rT5FRgL+Cj7YvMo+le5wnPAF5fVWdMfmJVHT4zJWqmLDctuknWBO4ASLJzklOSHAdc0oZ9N8m57Vv/xFVYSHJPkne3lsAZSdZvwzdPcnqSeUneNTB9knwgyUVt3MsGlnlykm8muSzJl5NkROv6TeCF7ScbJNkM2JDuWqLntHV8x0DNVyV5R2v1zkuyZRv+qCSfT3JWkvOT7NmGP7ENuyDJhUm2aNP+Z9tOFw2s9+FJzm7DjhrhOg+lqm6hu8rOa9prtVl7L5w32Opf0Os12FpL8vz2PjgvyTeSrD6+tZu/JM8GPgPsUVW/bMNePvA6fjrJCkleleQDA887IMknWvc97e9MvpcXxWnAjq37icBFwN1J1knySGAr4MkT6zMoydx0V2qa73u2rfNH2v/QpUm2T/LtJL8Y/AzQUqKqlosH8ABwAXAZcBewXRu+M/AbYPOBaddtf1el+wdZr/UX8Bet+1+At7Xu44D9WvergXta90uAH9L9XGJ94Bpgg7bMu+h+FP8I4HTgmSNc9+8Be7buw4APDqzjCsDJwJNb/1XAIa37/wCfbd3vAV7eutcGfg48Cvg4sG8bvnLbZi8BPjOw/LUGt2vr/veJbTnD74N7phh2Z3t9VgNWacO2AM4ZeI9M+Xq1bTeHrsXwE+BRbfhbgMMHpxn3/0Cr5T7g9onXuw3bCvgPYKXW/0lgP2AW3fVnJ6b7fwPrPfEen9H38iKu65XAbOCVwKuAfwZ2B3YCTgEOAD7Rpj0CeGPrngu8dEHv2faavr91HwrcQPe//UjgOtpnho+l47E8tejuraptqmpLYFfgiwPfPM+qqisHpn1tkp8CZ9BdrWWLNvz3dKEBcC6wWeveiW4XIXT/DBOeCRxTVQ9U1c3Aj4HtB5Z5XVU9SBfAmzE6E7svaX+PAfZKch5wPt033sHjTN9ufwfX8fnAYUkuoPsnX4XuQ+R04K1J3gJsWlX3AvOA/5Xk/UmeVVV3tXk8N8mZSeYBz2vLXZqsBHym1fcNHr5NFvZ6Pb1Nf2rbRvsDi3zsawbcR9faOWhg2C7AdsDZrfZdgMdU1a3AFUmenmQ9YEu6XYKTzeR7eVGcRreL8hl079PTB/qnWo+pLOg9O3FBi3nAxVV1Y1X9DriCh1/lSWO2PB2j+4OqOj3Jo+m+sULXogO6XTHAnwM7VtVvk5xM96EOcF+1r3B0LcTB7beoP0j83UD35HlNt2OBjyTZlq7VcjvwRmD7qrojyVweWsfB2gbrCvCSqpp8Ee1Lk5wJvBD4fpJXVtWP2rJ2B96V5ES6FvAn6Vo21yY5YtIyxyLJY+jW8xa643Q3A0+ha538z8CkC3u9AvywqvYZXbXT4kG6Y1cnJnlrVb2Hrvajq+ofp5j+q236y4DvDLz/B83ke3lRnEoXalvT7Zm5FngD8GvgC8C6C3pyklVY8Ht2Yr0f5OHb4EGWnm0gltNjdO240wrAr6YYvRZwRwu5Lem+qS/MqTzUYtp3YPgpwMva8Y5ZwLOBsxa/8sVTVfcAJwGfp2vNrUkX7nelO8642xCzOR44ZOAYxVPb38cAV1TVv9IF6pOTbAj8tqq+BHwA2JaHPiBua8euXjpd67e42mvyb3S7r4rutb+xtUxeQfceGdYZwE5JHtvm/agkj5vumqdDVf2W7ovJvkkOAk4EXpru5BySrJuHzsT8Dt3tsvahC71lyWnAHsDtba/K7XS73Xds4xZmqXvPavEsT986Vm27ZaD7Brt/VT0wxXHzHwCvSnIp3S2A/uisrCkcCnyl7b47dmD4d+j+qX5K1+J7c1Xd1AJ0ph3T6tm7qi5Lcj7dt/RrGW43zj8DHwUuTHcW25V0HyJ7Aa9Ich9wE92xvO2BDyR5kG5X2d9X1Z1JPkP3zfomumubjsPE+2Al4H66Xc0fbuM+CXwryX5074PfTDmHKVTVrUkOAI5pJzsAvI3uWOZSp6puT7Ir3XHFQ+lqPaG9tvfRHWu+urX4LwWeUFUz/iVtCc2jO3b6lUnDVq+q2xZ2zsxS9J7VEvISYJKkXlsud11KkpYfBp0kqdcMOklSrxl0kqReM+gkSb1m0Kn3kvxTumt6Xtiu5fi0dHdwWG0x5rXYd6Zo14rccHGfL2nxGHTqtSQ70v3eb9uqejLdVW+uBV5Hd5WYmXQA3QW1Jc0gg059twFwW7sGIVV1G90VLjYETkpyEvzRfdpe2i6LNt87U7Rxb2pXtr8w7Q4Q6e6AcGmSz7RW5AlJVm1Xw58DfLm1KledgXWXhEGn/jsB2CTdDUY/meQ57XJlNwDPrarnLuT5HwM+VVVbAzdODEzyfLqLfe8AbANsl+72N7ThR1bVE+nujPCSqvomcA7dnR62aRe/ljQDDDr1WrvO53Z09527Ffhau1TXsOZ3Z4rnt8f5wHl0V/afuMvFlVV1QesevAOEpDFYnq51qeVUVT1Ad2uhk9vtVvafarKB7sl3VZjqOnkB3ltVn37YwO7GtpOv5u9uSmmMbNGp15I8PskWA4O2Aa4G7gbWGBh+c5Kt2kWN/3Jg+PzuTHE88DftqvYk2Wji6v8LMHmZkmaALTr13erAx5OsTXe3gsvpdmPuA/wgyQ3tON1hdDfVvZXuWNrq7flT3pmiqk5IshVwersK/j3Ay+lacPMzF/i3JPfS3e/Q43TSDPDuBZKkXnPXpSSp1ww6SVKvGXSSpF4z6CRJvWbQSZJ6zaCTJPWaQSdJ6rX/DyROyDgTFF0iAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.catplot(data=melt_df, x=\"Student\", y=\"Score\", hue=\"Exam\", kind=\"bar\")\n", "plt.title(\"Scores on Midterm and Final Exams\")\n", "plt.xlabel(\"Student\")\n", "plt.ylabel(\"Scores(points)\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "cornflowerblue" }, "name": "Midterm", "type": "bar", "x": [ "Brandon", "Vanessa", "Daniel", "Kevin", "Wiliam" ], "y": [ 85, 60, 60, 65, 100 ] }, { "marker": { "color": "orange" }, "name": "Final", "type": "bar", "x": [ "Brandon", "Vanessa", "Daniel", "Kevin", "Wiliam" ], "y": [ 90, 90, 65, 80, 95 ] } ], "layout": { "autosize": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Scores on Midterm and Final Exams" }, "xaxis": { "autorange": true, "range": [ -0.5, 4.5 ], "title": { "text": "Student" }, "type": "category" }, "yaxis": { "autorange": true, "range": [ 0, 105.26315789473684 ], "title": { "text": "Scores(points)" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4EAAAHCCAYAAABR+cwnAAAgAElEQVR4Xu2df5RVxZ3gv4BggxIkKJBGFxWSgThI1EXbTEjcSHQG4ibLmU5c4yau+Hvj0YOGIOdIZnW2ZVFZ3WT8jTGT0ai9y4zjQnRWMyTGXRQiox4j7iiRUQmoDQIKDTT0nnrJfbl9+7133+363npV7376j0S6q7636vP9vn7v01W37qDe3t5e4QsCEIAABCAAAQhAAAIQgAAECkFgEBJYiDwzSQhAAAIQgAAEIAABCEAAAiUCSCCFAAEIQAACEIAABCAAAQhAoEAEkMACJZupQgACEIAABCAAAQhAAAIQQAKpAQhAAAIQgAAEIAABCEAAAgUigAQWKNlMFQIQgAAEIAABCEAAAhCAABJIDUAAAhCAAAQgAAEIQAACECgQASSwQMlmqhCAAAQgAAEIQAACEIAABJBAagACEIAABCAAAQhAAAIQgECBCCCBBUo2U4UABCAAAQhAAAIQgAAEIIAEUgMQgAAEIAABCEAAAhCAAAQKRAAJLFCymSoEIAABCEAAAhCAAAQgAAEkkBqAAAQgAAEIQAACEIAABCBQIAJIYIGSzVQhAAEIQAACEIAABCAAAQgggdQABCAAAQhAAAIQgAAEIACBAhFAAguUbKYKAQhAAAIQgAAEIAABCEAACaQGIAABCEAAAhCAAAQgAAEIFIgAEligZDNVCEAAAhCAAAQgAAEIQAACSCA1AAEIQAACEIAABCAAAQhAoEAEkMACJZupQgACEIAABCAAAQhAAAIQQAKpAQhAAAIQgAAEIAABCEAAAgUigAQWKNlMFQIQgAAEIAABCEAAAhCAABJIDUAAAhCAAAQgAAEIQAACECgQASSwQMlmqhCAAAQgAAEIQAACEIAABJBAagACEIAABCAAAQhAAAIQgECBCCCBBUo2U4UABCAAAQhAAAIQgAAEIIAEUgMQgAAEIAABCEAAAhCAAAQKRAAJLFCymSoEIAABCEAAAhCAAAQgAAEkkBqAAAQgAAEIQAACEIAABCBQIAJIYIGSzVQhAAEIQAACEIAABCAAAQgggdQABCAAAQhAAAIQgAAEIACBAhFAAguUbKYKAQhAAAIQgAAEIAABCEAACaQGIAABCEAAAhCAAAQgAAEIFIgAEligZDNVCEAAAhCAAAQgAAEIQAACSCA1AAEIQAACEIAABCAAAQhAoEAEkMACJZupQgACEIAABCAAAQhAAAIQQAKpAQhAAAIQgAAEIAABCEAAAgUigAQWKNm+TnXFqmek8/HVcseSq2X0qJG+DtO7cYXKzYz7zh/9ndy99Bo5fmKrd1wZEAQgAAEIQAACEGh2AkFL4PYdu+SKhbfJS6++0SdPc2a1yQ3XXigtLcOaPX+5z2/tixvkgquWSOu4MRU/tHd375PFt9wvK59aI/POmyPzL2kvjWnjps1y6YJb5c/ObCt/r9pgkzIT5XXGSVNS++YOwOMLZJFA0/b6pcurzuaB2xfK5GMnlF5Px0w4KtfXTxYJTBt3vOY8ThVDgwAEIAABCEAAAl4RCFYCIzlJfgiM5OPIjx/BypJCqUWcTahKH7ir/RwJVICfEiKrBKatvkXy7ZsEpo07f9JcAQIQgAAEIAABCDQXgSAlMFp9MqmotuL34IqnZPaZp7G90LJe47L906fX9FkNjOfhrXfek4Gu3LESOLAkaUvgwEaRvVfWlUAkMDtjekAAAhCAAAQgAIFaBIKUwIFuF4yvWkVQblwwT+bOnllmtOyeTln+0Mryvyutfpk2a9dvkGV/cYX8t3s7S1sh49sl41skq13HfD95rROnTqp79TJaadu8tat0iUrbNaM2l3/rq6U28e2AZvvfjOlTUl8dEbNlf/Gf5IFHnugjeib+oiX3yTWXfU2W3dXZ72dmO6i5dpxvpS28nzt1muzctbs0d/NVzxbf5DbB5Bbg+NzNypbZ0mq+TD7/49f/tHSN9nPO6MclqodkbpJ1Ug1cpRozbZO8s+YmjVvavZT1iFel11XU77Ybvi0/6nyyVOvmq1KtVtq6Waku6xlLxLeetvHXWzJPEeeTpn2y9Acj8xVtX47nsNIWclMDW97tkm+1ny1XL/6BRK+1qO3Lr20s15WJVSlGpXqo97WX+uKkAQQgAAEIQAACEBgggSAlMP6hr94PVOYDXXIly3zo/eEjT8gV3/xK+cOh+Y9odbHa9rhIEGqJV/xeuEofriORjA5DqWd1M8px9MEyPvfoA3j8e3FRjH84rueDdaVrmdW++AEuZg7mK5Kq+EpgXHIiCay2RTTJopbkR5zMWOIHySRjxOeeFPm4UCW5RKJsw+uZ517ucy9jpXxlyU293Gr9Dqgn59Uk0DCp9EeO+GvF/Le5hvmKS3+l69YzliwSaNpGdbH+5X8ur1ZXev2adjff+bB8Y+6s8qE01V570es8LnfxvFX6fvyPHtVep6xsDvDdim4QgAAEIAABCKgRCFICzeyrHQpT6761WsJY7YNpJZlJCkc8G9HqQXKbajz+6CNGllaiKm2ffHL1WvlC2/Sqh9rUEqRqIlRtNc6shMU/sFeqqvgH2ejgENPvMydMKq0Cdiy8SCrNpxo3s7JSiU1cLmvN0YxnUce9/Q6pSV6v0vWj+UXxk/PP+v16X4WRZIwfO6bfwTn15KZWTdV7qmqtA1Yi4a21Epg8ybNaHpJMKjHNKoG1DrSJv96ja5kxmD8QmD/wmBX7ek6drTSfatzr/X613xOvvPYbGd5yKCej1vsCoh0EIAABCEAAAuoEgpXApHjFt3Can8U/HNZz71S1D3b1rOKlyYX5eSQlHYsulml/dHx5S1q92wyja8TjJLdzJj9cVxOhLNtpk6sZEUuzxdJ8GaHbs3dvP6lNXrvWNbPcE1gtT0nRaqQE1vMHinpzk4Vbrd8O9YhXVgk0W2yrbXONtk5GYxroymo9447PO75SV+1EW9O+nq2r9cpedP1k++ganFas/r5FQAhAAAIQgAAELAk0hQQmGUTbuKIPqLVW7kzfWlsxK/2sWrzkfXqVchONqdJ9g7U+tEaxKm0xq/azekWjVg0lrxcXnGguleQhy8pcvRJYiVly7JH8N0oCow/+8T9CDGQlMFolrjWPev64EfGpR6ZsJTB63cWFT2MlMOv2yahmK/2BJRrP+9s+6LOanMdKYDXZzPqHH8vf8XSHAAQgAAEIQAAC/Qg0pQQmPzjX82E575XAtNqr99EWjV4JNPNIsqpHAqtttYw+KNe7HbRanpJ8GyGB1VbtbCQwC7daNZa3BKb9wSG+9baesWSR1/i8k3+ISa5UVrt2XhIYH9tA7mVO+73BzyEAAQhAAAIQgMBACAQpgeaD8aqnnysd7lDpK7l6VWv1LLoHb9XPnpNKKw5Z7gms93AXM/6XX/2NfL7txD7Dr+fDseY9gfU80qEWu2jw9UhgLTZJSa8kTVmloBESWO2aNhKYhVsjJbBanbhcCYzXoTnsyZwCmnaAUMQsDwmsdH9vrbocyC9w+kAAAhCAAAQgAIGBEAhWAqPHCCT/0l/tIfKVTgeNryoZeMkPjZVOFzTtam0vjT7kRUfSt7QMK+UlfiphpYNU6hVIE6vSdrdap4NWO3zEpQTGxx3PWTSX5CMHqjGudApkXBDNf5vDbhohgZVyGF/9iW8RTVs5i+emkmBV41btl8BA/8BQa+Usfk9gpT8ExLcO531PYKVTYyu9fmuxTG7Htr0nsFIN15OHgfwipw8EIAABCEAAAhDIQiBICYykqtLzvrIcBlHpWWfRfU0RxFrPCax26mC1e9cqSUD8AI1K16qWzOS2t7TnBFZ6Vp9rCYyLYJzvsUeP7/PoiUr5TR6uUelgj3g+GyGBlcZt8hI9Yy/L6aDJ3CSfN2dqpRK3RkmguW7yQByTj47rLpJFN91XeiZjVINZRKjWqabmmoZDtOoXfzxExCHiFq+fSixnnjat36mzthJY6fdAlmeBZvlFTlsIQAACEIAABCCQhUCwEphlkrSFAAQgAAEIQAACEIAABCAAgd8RQAKpBAhAAAIQgAAEIAABCEAAAgUigAQWKNlMFQIQgAAEIAABCEAAAhCAABJIDUAAAhCAAAQgAAEIQAACECgQASSwQMlmqhCAAAQgAAEIQAACEIAABJBAagACEIAABCAAAQhAAAIQgECBCCCBBUo2U4UABCAAAQhAAAIQgAAEIIAEUgMQgAAEIAABCEAAAhCAAAQKRAAJLFCymSoEIAABCEAAAhCAAAQgAAEkkBqAAAQgAAEIQAACEIAABCBQIAJIYIGSzVQhAAEIQAACEIAABCAAAQgggdQABCAAAQhAAAIQgAAEIACBAhFAAguUbKYKAQhAAAIQgAAEIAABCEAACaQGIAABCEAAAhCAAAQgAAEIFIgAEligZDNVCEAAAhCAAAQgAAEIQAACSCA1AAEIQAACEIAABCAAAQhAoEAEkMACJZupQgACEIAABCAAAQhAAAIQQAKpAQhAAAIQgAAEIAABCEAAAgUigAQWKNlMFQIQgAAEIAABCEAAAhCAABJIDUAAAhCAAAQgAAEIQAACECgQASSwQMlmqhCAAAQgAAEIQAACEIAABJBAagACEIAABCAAAQhAAAIQgECBCCCBBUo2U4UABCAAAQhAAAIQgAAEIIAEUgMQgAAEIAABCEAAAhCAAAQKRAAJLFCymSoEIAABCEAAAhCAAAQgAAEkkBqAAAQgAAEIQAACEIAABCBQIAJIYIGSzVQhAAEIQAACEIAABCAAAQgggdQABCAAAQhAAAIQgAAEIACBAhFAAguUbKYKAQhAAAIQgAAEIAABCEAACaQGIAABCEAAAhCAAAQgAAEIFIgAEligZDNVCEAAAhCAAAQgAAEIQAACSCA1AAEIQAACEIAABCAAAQhAoEAEkMACJZupQgACEIAABCAAAQhAAAIQQAKpAQhAAAIQgAAEIAABCEAAAgUigAQWKNlMFQIQgAAEIAABCEAAAhCAABJIDUAAAhCAAAQgAAEIQAACECgQASSwQMlmqhCAAAQgAAEIQAACEIAABJBAagACEIAABCAAAQhAAAIQgECBCCCBBUo2U4UABCAAAQhAAAIQgAAEIIAEUgMQgAAEIAABCEAAAhCAAAQKRAAJLFCymSoEIAABCEAAAhCAAAQgAAEkkBqAAAQgAAEIQAACEIAABCBQIAJIYIGSzVQhAAEIQAACEIAABCAAAQgggdQABCAAAQhAAAIQgAAEIACBAhFAAguUbKYKAQhAAAIQgAAEIAABCEAACaQGIAABCEAAAhCAAAQgAAEIFIgAEligZDNVCEAAAhCAAAQgAAEIQAACSCA1AAEIQAACEIAABCAAAQhAoEAEkMACJZupQgACEIAABCAAAQhAAAIQQAKpAQhAAAIQgAAEIAABCEAAAgUigARaJntz1x7LCHSHAAQgAAEIQAACEICAPwRaxwz3ZzCMJBcCSKAlViTQEiDdIQABCEAAAhCAAAS8IoAEepWOXAaDBFpiRQItAdIdAhCAAAQgAAEIQMArAkigV+nIZTBIoCVWJNASIN0hAAEIQAACEIAABLwigAR6lY5cBoMEWmJFAi0B0h0CEIAABCAAAQhAwCsCSKBX6chlMEigJVYk0BIg3SEAAQhAAAIQgAAEvCKABHqVjlwGgwRaYkUCLQHSHQIQgAAEIAABCEDAKwJIoFfpyGUwSKAlViTQEiDdIQABCEAAAhCAAAS8IoAEepWOXAaDBFpiRQItAdIdAhCAAAQgAAEIQMArAi4lcPuHPbK5a3+m+U9uHSaHDh2SqQ+N+xIolASuWPWMvPn2Fpl/SXsfCtt37JIrFt4mL736Run7D9y+UGZMn1JuY/pdv3R56d9zZrXJDddeKC0tw0r/RgJ5SUEAAhCAAAQgAAEINBMB1xJ4zz98JK9vOVAXwtM/dYh84wuH5SqBGzdtlkVL7pOOhRfJ8RNb+43LuMGaF17p4wR1Dd6jRoWQwLUvbpALrlpSwj7vvDl9JLC7e58svuV+aTv5BJk7e6Ykk276LrurU+5YcrWMHjVSlt3TWYoTiSQS6FE1MxQIQAACEIAABCAAAWsCzSqB0ef+t955r/zZ3sCKFoTMf5vP/Ns/2FW3BG7e+n7NttbJyClAISQwYldpJdBI3813Piwd111ckrykFBrpO/bo8SVBNF9JKUQCc6pMwkIAAhCAAAQgAAEINIRAs0vgjp0fydlnnFr+fG8c4cnVz8vOXbv7yGE1+PGVQCSwISWa7aKVJDApdSZitNp3xTe/0meV0PwsuVKIBGbLAa0hAAEIQAACEIAABPwm0OwSeObnTpGnf/krue7Kb5QScdP3HxTzvQceeaLqSqDxg+UPrSwnztwitujK86Xj+38jK59aU/5+dFtZfCfiiVMnleUycokvzzq9dF3zswXfPlf+6w9+Iid86lh5+LGflWKZ3YszT5tWdTejbQUVfiXQJKjz8dV99vQmJbD9nDPK9wim7RG2TQj9IQABCEAAAhCAgC8ENv52r+zZd9CX4aiPY8jgQTLlmBb1uASsn4A5GMbVPYHRjj/z2d5sCTVfx0w4qvTf5v+jW8CS20HNQpLxhej2sLSVQOMXizrulbuXXlO6pzC+EGVc4tIFt8qfndlWvr0s+t7l3/pq+fa0eJs8/AMJTNzzZ4qBlcD6X7i0hAAEIAABCECgeQls/7BXfvyLvdK1q7fpJjl82CC56MxhcuTHBjfd3Gwn1OwrgUYCJx87QRbddK+MPHxEaUXw9TffqSiBreOO7LczME0Ck2eIxG8/q3S/YVLyonsU51/WXlqISv7bNr+mf+ElkHsCNcqIGBCAAAQgAAEINCMBJLAZs5o+pyJIoJGr+Nkf8VvE4qIWSWB8Z2A9EhjfOmqIR1tCkcD0+lNvUemeQE4HVcdMQAhAAAIQgAAEmoQAEtgkicw4jaJIYBxLmgRGTxIwfeqRwPjBkvHrVNrayUpgxgKtt3n8xsyoT/xZgDwnsF6StIMABCAAAQhAoEgEkMAiZfsPc0UC+z4iIi59hpJ5vJz5Ms8O37N3b+l549HWTfP95D2B5nsPrnhKZp95WsXHTyCBAb7OOB00wKQxZAhAAAIQgAAE6iKABNaFqekaIYF9JTDaOWhOAW0dN0Y+3zZddn20u3ywpJHE65cuL9VBpdNBzfejZ5WzEtgkLxcksEkSyTQgAAEIQAACEOhHAAksZlE0qwQWM5uVZ12og2HySDwSmAdVYkIAAhCAAAQg4AMBJNCHLLgfg2sJ3Ny1P9MkJ7cOk0OHDsnUh8Z9CSCBlhWBBFoCpDsEIAABCEAAAt4SQAK9TU2uA3MpgblOhOBVCSCBlsWBBFoCpDsEIAABCEAAAt4SQAK9TU2uA0MCc8XrRXAk0DINSKAlQLpDAAIQgAAEIOAtASTQ29TkOjAkMFe8XgRHAi3TgARaAqQ7BCAAAQhAAALeEkACvU1NrgNDAnPF60VwJNAyDUigJUC6QwACEIAABCDgLYFmlsDRhw2Wb54xVD5++GBv+TdqYEhgo8i7uy4SaMkaCbQESHcIQAACEIAABLwl0OwSeG3bWjnk4E5v+dsObO/HPy+9hxyeOQwSmBlZcB2QQMuUIYGWAOkOAQhAAAIQgIC3BIoggWN/dZa3/G0GtvfIL8m26Q96L4G7P/xA9n7wZqapjhg3jUdEZCLWvzESaAkQCbQESHcIQAACEIAABLwlgAR6m5rUgYUkgUP+z9fk0Pf/d+qcTIPdE/+TDDn1dnUJXPviBll2V6fcseRqGT1qZF1jqdRo46bNsmjJfdKx8CI5fmLrgOPk3REJtCSMBFoCpDsEIAABCEAAAt4SQAK9TU3qwJDA/oi6u/fJ4lvul5VPrenzw3nnzZGZp01DAlOrigZlAkggxQABCEAAAhCAQLMSQALDzSwSWF0C204+QebOnplLclkJzAWrf0GRQP9ywoggAAEIQAACENAhgATqcGxEFCQwmwTGt4OanlcsvE3mzGqTHz36hGze2lX67xuuvVBaWoaVAi+7p1OWP7Sy9N+t48bI3UuvKW3/RAIbUe0NuCYS2ADoXBICEIAABCAAAScEkEAnmHO5CBJoL4HHTDiqJH7my2wjjVYQt+/YJauefk6+MXdWWQi3vNtVart56/vcE5hLRXsWFAn0LCEMBwIQgAAEIAABNQJIoBpK54GQwOoSGL8n8MSpk0qHwbz+5jvlewJNT7MSOP+ydpkxfUpZ9I49enzFbaTxVcTtH+xCAp1XewMuiAQ2ADqXhAAEIAABCEDACQEk0AnmXC6CBFaXwEr3BFbaDlpLAk37C65aUr5IJJNIYC7l7F9QJNC/nDAiCEAAAhCAAAR0CCCBOhwbEQUJzE8CjQAu6ri3fB8gK4GNqPAGXxMJbHACuDwEIAABCEAAArkRQAJzQ5t7YCQwXwmMP1NwxapnpPPx1aVtpawE5l7aflwACfQjD4wCAhCAAAQgAAF9AkigPlNXEZHA/CQw+bzBz506TXbu2o0EuipuH66DBPqQBcYAAQhAAAIQgEAeBJDAPKi6iYkEuuEc6lUG9fb29oY6eB/GjQT2z8IhH74mw9/9Ox/Sk8sY9oz/mvSMOC6X2EULOqR7s4zY/OOmnfaesf9Weg6f2rTzY2IQgEDzE0ACw81xSBK494M3M4EeMW6aHDp0SKY+NO5LAAm0rAgksLIEHvn8F2Xw/u2WdP3r3jNismw75TEkUCk1RgI/vr5dhu5crxTRozCDhsi7n30eCfQoJQwFAhDITgAJzM7Mlx6hSKAvvIo2DiTQMuNIIBJoWUKF7o4EFjr9TB4CEAiAABIYQJKqDBEJDDd3LkaOBFpSRgKRQMsSKnR3JLDQ6WfyEIBAAASQwACShASGm6QGjhwJtISPBCKBliVU6O5IYKHTz+QhAIEACCCBASQJCQw3SQ0cORJoCR8JRAItS6jQ3ZHAQqefyUMAAgEQQAIDSBISGG6SGjhyJNASPhKIBFqWUKG7I4GFTj+ThwAEAiCABAaQJCQw3CQ1cORIoCV8JBAJtCyhQndHAgudfiYPAQgEQAAJDCBJSGC4SWrgyJFAS/hIIBJoWUKF7o4EFjr9TB4CEAiAABIYQJKQwHCT1MCRI4GW8JFAJNCyhArdHQksdPqZPAQgEAABJDCAJCGB4SapgSNHAi3hI4FIoGUJFbo7Eljo9DN5CEAgAAJIYABJQgLDTVIDR44EWsJHApFAyxIqdHcksNDpZ/IQgEAABJDAAJKEBIabpAaOHAm0hD8QCTx40PKinncftvs1OfL5L8rg/ds9H2n24fWMmCzbTnlMekYcl70zPfoRQAIpCghAAAJ+E0AC/c5PrdHtPfJLsm36g9J7yOGZJ9E6ZnjmPnQIiwASaJmvgUjgvp5e+Z9r9lte2d/uXztho0xYfyYS6G+KvBkZEuhNKhgIBCAAgYoEkMBwCwMJDDd3LkaOBFpSHqgEPvLsfnl9ywHLq/vZffFZm5BAP1Pj3aiQQO9SwoAgAAEI9CGABIZbEEhguLlzMXIk0JIyEtgfIBJoWVQF6o4EFijZTBUCEAiSABIYZNpKg0YCw82di5EjgZaUkUAk0LKECt0dCSx0+pk8BCAQAAEkMIAkVRkiEhhu7lyMHAm0pIwEIoGWJVTo7khgodPP5CEAgQAIIIEBJAkJDDdJDRw5EmgJHwlEAi1LqNDdkcBCp5/JQwACARBAAgNIEhIYbpIaOHIk0BI+EogEWpZQobsjgYVOP5OHAAQCIIAEBpAkJDDcJDVw5EigJXwkEAm0LKFCd0cCC51+Jg8BCARAAAkMIElIYLhJauDIkUAR2bhps1y64FbZvLWrlIobF8yTubNnltOyYtUzcv3S5aV/z5nVJjdce6G0tAwr/RsJRAIb+PoN/tJIYPApZAIQgECTE0ACw00wB8OEmzsXIy+8BG7fsUuuWHibzL+sXWZMnyLJf699cYMsu6tT7lhytYweNVKW3dNZysv8S9qRwCoVyiMiXLx0m+MaSGBz5JFZQAACzUsACQw3t0hguLlzMfLCS6BZBVy05D7pWHiRHD+xVbq798niW+6XtpNPKK0GGuk79ujx5ZXBpBSyEshKoIsXarNeAwls1swyLwhAoFkIIIHhZhIJDDd3LkZeeAk0kI3o/fTpNXL30mtKzG++82HpuO5iGX7ooX2E0PwsKY1IIBLo4oXarNdAAps1s8wLAhBoFgJIYLiZRALDzZ2LkSOBImJW926961Hp2rajdF9gdE9gtCrYfs4Zpa2ilSSwe9+BzHnaufuA/PBne+T1Ldn7Zr5YAzp87+xN0vrCmTJ4//YGXD3fS/aMmCwfnva4tIz5ZL4XKkj0vTvekhHPzZWhO9c334wHDZFtn1srI8ad2HxzY0YQ8JhAz4FeOfDh2x6P0H5oQw6fIIcMGWwfqI4Ib72/X5Y/vUe6dvXW0TqsJqMPGyzXnr5Oxq77UlgDr3O0RgL3nvqwDBsxqs4ef2jWMmxI5j50CItA4SXQrOxFK3/mnr/onkAjfrO/eFrqSuC2XfsyZ3z33oPy4C/2Nq0ELj57k0xoYgn8YMbfy+CPTcqcdzr0J9D70dvysXV/3rQS+P6fPC+DR/8xqYcABBwSONjbK8Pe+CsZ/s7fOLyqu0vtPfIs6Z76n2Xw4EFOLrr1gwPyo9XdzSuBbetk7K+aVwJ3nfITGTxsZOZa+fjI3x2AyFfzEii8BJpVwM7HV/c58TN++Av3BGYvfg6Gyc6sqD3YDlrUzDNvCORL4LBNd8qoDb+7xaPZvj48/ruy85PfczYttoM6Q61+IbaDqiNtqoCFl8Do8RAdiy7uczqoWQk0B8NwOmj2ekcCszMrag8ksKiZZ94QyJcAEqjHFwnUY+k6EhLomnhY1yu8BJp0GdG74Kol5czxnEC7IkYC7fgVqTcSWKRsM1cIuCOABOqxRgL1WLqOhAS6Jh7W9ZBAy3xxOmh/gEigZVEVqDsSWKr4jEMAACAASURBVKBkM1UIOCSABOrBRgL1WLqOhAS6Jh7W9ZBAy3whgUigZQkVujsSWOj0M3kI5EYACdRDiwTqsXQdCQl0TTys6yGBlvlCApFAyxIqdHcksNDpZ/IQyI0AEqiHFgnUY+k6EhLomnhY10MCLfOFBCKBliVU6O5IYKHTz+QhkBsBJFAPLRKox9J1JCTQNfGwrocEWuYLCUQCLUuo0N2RwEKnn8lDIDcCSKAeWiRQj6XrSEiga+JhXQ8JtMwXEogEWpZQobsjgYVOP5OHQG4EkEA9tEigHkvXkZBA18TDuh4SaJkvJBAJtCyhQndHAgudfiYPgdwIIIF6aJFAPZauIyGBromHdT0k0DJfSCASaFlChe6OBBY6/UweArkRQAL10CKBeixdR0ICXRMP63pIoGW+kEAk0LKECt0dCSx0+pk8BHIjgATqoUUC9Vi6joQEuiYe1vWQQMt8IYFIoGUJFbo7Eljo9DN5CORGAAnUQ4sE6rF0HQkJdE08rOshgZb5QgKRQMsSKnR3JLDQ6WfyEMiNABKohxYJ1GPpOhIS6Jp4WNdDAi3zhQQigZYlVOjuSGCh08/kIZAbASRQDy0SqMfSdSQk0DXxsK6HBFrmCwlEAi1LqNDdkcBCp5/JQyA3AkigHlokUI+l60hIoGviYV0PCbTMFxKIBFqWUKG7I4GFTj+Th0BuBJBAPbRIoB5L15GQQNfEw7oeEmiZLyQQCbQsoUJ3RwILnX4mD4HcCCCBemiRQD2WriMhga6Jh3U9JNAyX0ggEmhZQoXujgQWOv1MHgK5EUAC9dAigXosXUdCAl0TD+t6uUrgilXPyPVLl1ckcuOCeTJ39sywaFUYLRKIBAZfxA2cABLYQPhcGgJNTAAJ1EsuEqjH0nUkJNA18bCul4sELrunU5Y/tFJOnDpJ7lhytYweNbIPle07dskVC2+Tl159Q+adN0fmX9IeFrXYaJFAJDDY4vVg4EigB0lgCBBoQgJIoF5SkUA9lq4jIYGuiYd1PVUJjOTumAlHyQ3XXigtLcNq0uju3ieLb7lf3nrnvYqyGAJKJBAJDKFOfR0jEuhrZhgXBMImgATq5Q8J1GPpOhIS6Jp4WNdTl8CXX/2NfL7txEwUfrHmJZk29bh+K4aZgjSoMRKIBDao9JriskhgU6SRSUDAOwJIoF5KkEA9lq4jIYGuiYd1PVUJDGvqOqNFApFAnUoqZhQksJh5Z9YQyJsAEqhHGAnUY+k6EhLomnhY10MCLfOFBCKBliVU6O5IYKHTz+QhkBsBJFAPLRKox9J1JCTQNfGwrocEWuYLCUQCLUuo0N2RwEKnn8lDIDcCSKAeWiRQj6XrSEiga+JhXS9XCTSnhG55t6t0SIz5MofArHxqjbSOGyN3L71Gjp/YGhatCqNFApHA4Iu4gRNAAhsIn0tDoIkJIIF6yUUC9Vi6joQEuiYe1vVyk8DopND5l7XLjOlTZO2LG6Tz8dUlIXz5tY3l/047QdR3nEggEuh7jfo8PiTQ5+wwNgiESwAJ1MsdEqjH0nUkJNA18bCul6sELrrpXvnO5eeWVvzMqqD5Ms8E3Lhps9x858PScd3FQZ4IGk8xEogEhvWS92u0SKBf+WA0EGgWAkigXiaRQD2WriMhga6Jh3W93CQwegZg+zlnyORjJ5QeDh9fFVx2V2ewzwZEAmsX+eKzNsmE9WfK4P3bw3o11DHanhGTZdspj0nPiOPqaE2TNAJIYBohfg4BCAyEABI4EGqV+yCBeixdR0ICXRMP63q5SaDBYFb8Ll1wq2ze2iXzzptTWgWMtonOOGlK6d+hf7ES2D+DSGDoVe1u/EigO9ZcCQJFIoAE6mUbCdRj6ToSEuiaeFjXy00CjezFt4PGscTvD+SewLAKpp7RIoH1UKKNIYAEUgcQgEAeBJBAPapIoB5L15GQQNfEw7peQySQewJ75ZFn98vrWw6EVS11jhYJrBMUzZBAagACEMiFABKohxUJ1GPpOhIS6Jp4WNdriASuWPWMrHnhldJJoawEhlUw9YwWCayHEm1YCaQGIACBvAgggXpkkUA9lq4jIYGuiYd1PXUJjN8HWA0FzwlkJTCsl8kfRsvBMLqZYzuoLk+iQQACvyOABOpVAhKox9J1JCTQNfGwrqcugdH0a90TGBai2qPlYJj+fFgJbKYKz3cuSGC+fIkOgaISQAL1Mo8E6rF0HQkJdE08rOvlJoFhYRj4aJFAJHDg1UNPJJAagAAE8iCABOpRRQL1WLqOhAS6Jh7W9ZBAy3whgUigZQkVujsSWOj0Z5788N92Zu4TSofeIcOle+yXnQ33vR29snXHQWfXc3mh4cMGybTuu+WI165xeVln1/rw+O/Kzk9+z9n1kEBnqNUvhASqI22qgLlKYPRMwJdefaMftBOnTuJh8ZwOGtyLiXsCdVOGBOrybPZoo//pfBm+dUVTTnPbSY86l8A7nuyWg73Nh3P6xCFy/vjlSKBSapFAJZANCIMENgB6QJfMVQKX3fO7v9o2w0Phq+WUlUBWAgN6vXs3VCTQu5R4PSAkUC89ZiUQCdTj6TISK4F6tEcfNliubVsrY391ll5QjyIhgR4lw8Oh5CaBHAxTPdv7ejgd1MPXQl1DYiWwLkx1N0IC60ZFQxFBAvXKAAnUY+k6EhKoRxwJrM6ydcxwPdBE8pIAEmiZFlYCWQm0LKFCd0cCC53+zJNHAjMjq9oBCdRj6ToSEqhHHAlEAvWqKbxIuUmgQWG2gx579HiZO3tmeGTqHDESiATWWSo0q0AACaQsshBAArPQqt0WCdRj6ToSEqhHHAlEAvWqKbxIuUqgeXD8gyueku9cfq60tAwLj04dI0YCkcA6yoQmVQgggZRGFgJIYBZaSCCng+rUCwfD6HBsRBTuCWwE9XCumZsE1joZ1ODhdND98jqng4bzSvn9SLknUDdlSKAuz2aPhgTqZZiVQD2WriOxEqhHnJVAVgL1qim8SLlJYGgo1r64QS64aklp2ElBXbHqGbl+6fLSz+bMapMbrr2wvLLJSiArgaHVuk/jRQJ9yob/Y0EC9XKEBOqxdB0JCdQjjgQigXrVFF4kJFBEjAAuu6uz4nMLkz9LPvYCCUQCw3vZ+zNiJNCfXIQwEiRQL0tIoB5L15GQQD3iSCASqFdN4UUqvASmPcoiebhNUgqRQCQwvJe9PyNGAv3JRQgjQQL1soQE6rF0HQkJ1COOBCKBetUUXiR1CYzuBbzg638qDzzyhLz06hsVqfhyT6A5vObSBbfK5q1d5XHOO29O6QH33d37ZPEt90vbySeUTzg17RctuU86Fl4kx09sFSQQCQzvZe/PiJFAf3IRwkiQQL0sIYF6LF1HQgL1iCOBSKBeNYUXSV0CQ0NgVvY6H19dvs8vktj2c86Q2V88rSSB5r9nTJ9SmlpSAj/4aH/mKe/uPig//nl38x4Mc/YmmfDCmTJ4//bMbHzvYA6G2XHq38uQUZOdDPXgwV7pdXKlxlyk96O3ZdS6P5ehO9c3ZgB5XnXQEOn6k7UyZMwf53mVcuzeXpGD5n+a9Mu8Fg5fd54M37qiKWf4wcmd0nv0V2TQIDfTe+u9/fKDn3bLwSYsmekTh8j5n1guR2y4xg1Mx1f5cNJ3Zd+nb5DBg90Uy5btPfLAP3ZL167mK5aSBJ6+Tsau+5LjLLq5nDkd9MN//RMZcujHMl/wiMOGZu5Dh7AI5C6B8QNXIjQP3L6wLFWNxpWUQDMecxDMmhdekUVXni8d3/+bmiuBu7t7Mk9h154DpV+ozXo66PfO3iStTSyBu077ezl09Ccz530gHXoO9Mrj67rlQDN+UhORz4x7V6Zu/FrTSuC2z62VlqOmDST1mfsYAfzV6/tk0/sHMvcNocO4UYPl89u/1bQSuOPkThky8Ssy2JEFbtyyT76PBIZQ+v3G+NGk78qBP75RDhniRgLf7tov9/8MCQyxWIwEdp/6sAxtyS6BI1oOCXHKjDkDgVwlsNKBK9H2y8u/9VUvHiJvxnPznQ9Lx3UXy+hRI0vojAS++faW0pZQ7gnMUE2/b7r4rE0yYX3zrgRuO+Ux6RlxXHYwA+zxs5f3y89/nf2PDQO8nNNu3/5Cl3z6N19vWgl897PPS8/hU50x3fDOAfnJL/c5u57LC/3pZ4bK7D0XNK0EbjvpUeke+2VnSNkO6gy1+oXYDqqHlO2g1Vm2jhmuB5pIXhLITQKj++niWykjApVW3xpFJxrn+LFjStIXbQedf1l7abWS00GzZwYJzM6sVg8kUJens2iDhggSqEcbCdRjaSIhgbo8XUZDAvVoI4FIoF41hRcpNwmsdepmpdW3RqJLPtj+xgXz+qxS8pzAbNlBArPxSmuNBKYR8vTnSKBqYpBAVZxIoC5Op9GQQD3cSCASqFdN4UXKTQJDWQm0TRmng/YniATaVlXf/kigLk9n0ZBAVdRIoCpOJFAXp9NoSKAebiQQCdSrpvAi5SaBBoVZQTMnb96x5Ory/Xa+3RNomzIkEAm0raG0/khgGiFPf44EqiYGCVTFiQTq4nQaDQnUw40EIoF61RRepFwl0ODw/XRQ25QhgUigbQ2l9UcC0wh5+nMkUDUxSKAqTiRQF6fTaEigHm4kEAnUq6bwIuUugeEhyTZiJBAJzFYx2VsjgdmZedEDCVRNAxKoihMJ1MXpNBoSqIcbCUQC9aopvEhIoGXOkEAk0LKEUrsjgamI/GyABKrmBQlUxYkE6uJ0Gg0J1MONBCKBetUUXqTcJTB+sqbB0zpujNy99Bo5fmJreLQqjBgJRALzLmQkMG/COcVHAlXBIoGqOJFAXZxOoyGBeriRQCRQr5rCi5SrBNY6GKZj0cWl5/CF/oUEIoF51zASmDfhnOIjgapgkUBVnEigLk6n0ZBAPdxIIBKoV03hRcpNApMPXY+j8elh8bYpQwKRQNsaSuuPBKYR8vTnSKBqYpBAVZxIoC5Op9GQQD3cSCASqFdN4UXKVQIX3XSvfOfyc/tt/fTtYfE2aUMCkUCb+qmnLxJYDyUP2yCBqklBAlVxIoG6OJ1GQwL1cCOBSKBeNYUXKTcJrPWweCSwVx55dr+8vuVAeBVTx4h5WHwdkDI0QQIzwPKpKRKomg0kUBUnEqiL02k0JFAPNxKIBOpVU3iRcpNAg6Latk9zr+Cbb2+R+Ze0h0csMWJWAlkJzLuIkcC8CecUHwlUBYsEquJEAnVxOo2GBOrhRgKRQL1qCi9SbhIY3RP40qtvpFI5ceokuWPJ1TJ61MjUtr41QAKRwLxrEgnMm3BO8ZFAVbBIoCpOJFAXp9NoSKAebiQQCdSrpvAi5SaB4aEY2IiRQCRwYJVTfy8ksH5WXrVEAlXTgQSq4kQCdXE6jYYE6uFGApFAvWoKLxISaJkzJBAJtCyh1O5IYCoiPxsggap5QQJVcSKBujidRkMC9XAjgUigXjWFF0lVAs0W0Jdf/Y18vu3ETCR+seYlmTb1OLaDZqLmb2MOhtHNDRKoy9NZNCRQFTUSqIoTCdTF6TQaEqiHGwlEAvWqKbxI6hJ4xcLb5JgJR8kN114oLS3DahKJThB96533uCcwvNqpOmIkUDeZSKAuT2fRkEBV1EigKk4kUBen02hIoB5uJBAJ1Kum8CKpSmA0/WX3dMryh1ZKtQNf4ofGzDtvTtCnhLIdtH/RI4G6vwiQQF2ezqIhgaqokUBVnEigLk6n0ZBAPdxIIBKoV03hRcpFAiMM5hERF1y1pCKVB25fKDOmTwmPWGLESCASmHcRI4F5E84pPhKoChYJVMWJBOridBoNCdTDjQQigXrVFF6kXCUwPBzZR4wEIoHZqyZbDyQwGy9vWiOBqqlAAlVxIoG6OJ1GQwL1cCOBSKBeNYUXCQm0zBkSiARallBqdyQwFZGfDZBA1bwggao4kUBdnE6jIYF6uJFAJFCvmsKLhARa5gwJRAItSyi1OxKYisjPBkigal6QQFWcSKAuTqfRkEA93EggEqhXTeFFylUCzQExW97tKp0Uar4W33K/rHxqjbSOGyN3L71Gjp/YGh6xxIiRQCQw7yJGAvMmnFN8JFAVLBKoihMJ1MXpNBoSqIcbCUQC9aopvEi5SWB0Auj8y9pLB8CYQ2I6H19dEsKXX9tY/u+0x0j4jhQJRALzrlEkMG/COcVHAlXBIoGqOJFAXZxOoyGBeriRQCRQr5rCi5SrBC666V75zuXnllb8zKqg+Zp/Sbts3LRZbr7zYem47uIgHxAfTzMSiATm/bJHAvMmnFN8JFAVLBKoihMJ1MXpNBoSqIcbCUQC9aopvEi5SWD0IPj2c86QycdOEPMQ+fiq4LK7OoN9QDwSWLvQeU6g7i8CJFCXp7NoSKAqaiRQFScSqIvTaTQkUA83EogE6lVTeJFyk0CDwqz4XbrgVtm8tUuih8JH20RnnDQl6IfER6lmJZCVwLxf9khg3oRzio8EqoJFAlVxIoG6OJ1GQwL1cCOBSKBeNYUXKVcJDA9H9hEjgUhg9qrJ1gMJzMbLm9ZIoGoqkEBVnEigLk6n0ZBAPdxIIBKoV03hRUICLXOGBCKBliWU2h0JTEXkZwMkUDUvSKAqTiRQF6fTaEigHm4kEAnUq6bwIuUqgdF9gfHHQrSOO7L0qIi2k0+QubNnhkcsMWIkEAnMu4iRwLwJ5xQfCVQFiwSq4kQCdXE6jYYE6uFGApFAvWoKL1KuEmhOBD326PEy+4unlU4D/cbcWaWTQuOPi+AREeEVTdqIORgmjVC2nyOB2Xh50xoJVE0FEqiKEwnUxek0GhKohxsJRAL1qim8SLlJoDkAJnpEhFn9i0sgj4jolUee3S+vbzkQXsXUMWIksA5IGZoggRlg+dQUCVTNBhKoihMJ1MXpNBoSqIcbCUQC9aopvEgNkUBWApHA8F4qvxtxz4jJsu2Ux6RnxHHOpoAEOkOteyEkUJUnEqiKEwnUxek0GhKohxsJRAL1qim8SLlJoEGxYtUzsuaFV+S6K78hP7j/b0vbQUcfMbL0zEDz/EDuCWQlMLSXDBKom7Fvf6FLPv2br8vQnet1A/sQDQlUzQISqIoTCdTF6TQaEqiHGwlEAvWqKbxIuUqgwWFW/S64akkfMg/cvlBmTJ8SHq0KI+ZgmP5Q2A6qW9qsBOrydBYNCVRFjQSq4kQCdXE6jYYE6uFGApFAvWoKL1LuEhgekmwjRgKRwGwVk701EpidmRc9kEDVNCCBqjiRQF2cTqMhgXq4kUAkUK+awouUmwTGD4YxJ4I26xcSiATmXdtIYN6Ec4qPBKqCRQJVcSKBujidRkMC9XAjgUigXjWFFwkJtMwZEogEWpZQanckMBWRnw2QQNW8IIGqOJFAXZxOoyGBeriRQCRQr5rCi5SbBBoU5jmBM0+b1jT3/1VKLxKIBOb9skcC8yacU3wkUBUsEqiKEwnUxek0GhKohxsJRAL1qim8SLlKoHke4IMrnpLvXH6uhP5Q+GqpRQKRwLxf9khg3oRzio8EqoJFAlVxIoG6OJ1GQwL1cCOBSKBeNYUXKTcJNPcEmkdBvPTqGxWpnDh1ktyx5GoZPWpkeNRiI0YCkcC8CxgJzJtwTvGRQFWwSKAqTiRQF6fTaEigHm4kEAnUq6bwIuUmgeGhGNiIkUAkcGCVU38vJLB+Vl61RAJV04EEquJEAnVxOo2GBOrhRgKRQL1qCi9S7hLIcwL7F8W+nl555Nn98voWHhYf2kuGh8XrZoyHxevy3PDOAfnJL/fpBvUkGhKom4j3dvTKHU92y8Fe3bg+RJs+cYicP365HPHaNT4MR30MSKAeUiQQCdSrpvAi5SqBRgCX3dXZZ9unuU/w0gW3yuXf+qrMnT0zPGKJEbMSyEpg3kXMSmDehHOKz0qgKlgkUBUnK4G6OJ1GQwL1cCOBSKBeNYUXKTcJ7O7eJ4tvuV/azzmj3+mgRg47H18tN1x7oVcHxkRjNmmMj23Fqmfk+qXLS9mdM6utz8+QQCQw75c9Epg34ZziI4GqYJFAVZxIoC5Op9GQQD3cSCASqFdN4UXKTQJrPSzerAbefOfD0nHdxd4cDBMJ4Mqn1vQRveRqpnnshfmaf0l76f+RQCQw75c9Epg34ZziI4GqYJFAVZxIoC5Op9GQQD3cSCASqFdN4UXKTQJDWwk0cnfs0eNLGVzzwivl1b7o+9HW1aQUIoFIYN4veyQwb8I5xUcCVcEigao4kUBdnE6jIYF6uJFAJFCvmsKLlJsEGhRmG6XZ9hl/FISP9wTGV/fMmCMJNHMwW1rbTj6hfP+iGf+iJfdJx8KL5PiJrbJ1e3fmrO/d31s6vIGDYTKja3gHczDM9n/9mBw87HgnY+ntFXnqpX3y81/3OLme64s0+8Ew7332eTn4sU87w/rrt3rkIQ6GccZb80LbT3pU9o0/RzNkzVhbtx+Uv+JgGGe8NS9kJPDDT/2FDBqkGbV6rK5dB+Wvf75XunY13ylCv5PAdTL2V19yA9PxVfYe+SX54DMPiQw9PPOVx41uydyHDmERyFUCDQrfTwc10vfm21vK2zsrSWD8vsakBB4YwNFqH3zYI/c9tbtpJfB7Z2+S1hfOlMH7t4f1aqhjtEYCd5/+v+Swoz5VR2v7Jvt6DsqK/7tbVr+y3z6YhxGuPGObTN34NRm6c72Ho7Mc0qAhsn3mOvlY63TLQPV1N7+L1mzYIz/+xd76OgTWqtlXAnee0iktk+bKkMFuPtlveKtb/vuqPU17Ouh/+MRyGbWhOU8H/WjyQhn8mb+UYYcMdvIqfnPrXrn3qT3NK4Gnr5Ox65pXAvef/qgMP2xU5lpx9bso88DooEYgdwlUG2lOgcwq4PKHVvaLbg6AWXTl+dLx/b+puRLIdtD+iVl81iaZsL55JXDbKY9Jz4jjcqrI/mHZDuoMte6F2A6qyrPZJXDbSY9K99gvqzKrFYxHRDhDrX4htoPqIWU7aHWWrWOG64EmkpcECi+ByazEVwJbWoYJ9wRmr1skMDuzWj2QQF2ezqIhgaqokUBVnNwTqIvTaTQkUA83EogE6lVTeJFylUAjUFve7erzSIXowJj4fXY+YUtKIKeDZs8OEpidGRLYnNtB3/3s89Jz+FTdgqgRjYfFO0OtfiFWAvWQ8rB4PZYm0vYPe0vbzJv3nsC1MvZXZ+lC8ySauSdw2/QHpfeQ7PcEshLoSRJzHEZuEhja6aAR46QEmu/znMBsFYgEZuOV1pqVwDRCnv6clUDVxLASqIqTlUBdnE6jsRKoh5uVQFYC9aopvEi5SWBozwkcaOq4J7A/OSRwoNVUuR8SqMvTWTQkUBU1EqiKEwnUxek0GhKohxsJRAL1qim8SLlJYKgrgVlTiAQigVlrJmt7JDArMU/aI4GqiUACVXEigbo4nUZDAvVwI4FIoF41hRcpNwk0KMz9dIs67pW7l15Teqae+fLxOYE2aUMCkUCb+qmnLxJYDyUP2yCBqklBAlVxIoG6OJ1GQwL1cCOBSKBeNYUXKVcJjEvf5q1dZToP3L5QZkyfEh6tCiNGApHAvAsZCcybcE7xkUBVsEigKk4kUBen02hIoB5uJBAJ1Kum8CLlLoHhIck2YiQQCcxWMdlbI4HZmXnRAwlUTQMSqIoTCdTF6TQaEqiHGwlEAvWqKbxIuUigOU3zzh/9XZ9toGZr6AVXLSkRunHBPJk7e2Z4tFgJrCtnHAxTF6a6GyGBdaPyqyESqJoPJFAVJxKoi9NpNCRQDzcSiATqVVN4kXKRQPN8QPM1/5L20v/HTwptHXekLL7lfmk/54ym2BLKSmD/okcCdX8RIIG6PJ1FQwJVUSOBqjiRQF2cTqMhgXq4kUAkUK+awoukLoFG+K5YeJvMv6y9LHlmFbDz8dXlh8Yn/x0etj+MGAlEAvOuXyQwb8I5xUcCVcEigao4kUBdnE6jIYF6uJFAJFCvmsKLlIsELrrpXvnO5eeWTwRNrgyaE0JvvvNh6bjuYhk9amR41GIjRgKRwLwLGAnMm3BO8ZFAVbBIoCpOJFAXp9NoSKAebiQQCdSrpvAiOZPAY48eX74PEAnslUee3S+vbzkQXsXUMWK2g9YBKUMTJDADLJ+aIoGq2UACVXEigbo4nUZDAvVwI4FIoF41hRdJXQKTD4mv9NB4sx102V2dcseSq1kJDK9mUkeMBKYiytQACcyEy5/GSKBqLpBAVZxIoC5Op9GQQD3cSCASqFdN4UVSl0CDwJwOuuaFV0r3AL782sZ+wpfcHhoetj+MmO2g/bOHBOpWNBKoy9NZNCRQFTUSqIoTCdTF6TQaEqiHGwlEAvWqKbxIuUigwWBEb/lDK0tE4g+Hjx4V0SwPjEcCkcC8X/ZIYN6Ec4qPBKqCRQJVcSKBujidRkMC9XAjgUigXjWFFyk3CQwPxcBGjAQigQOrnPp7IYH1s/KqJRKomg4kUBUnEqiL02k0JFAPNxKIBOpVU3iRkEDLnCGBSKBlCaV2RwJTEfnZAAlUzQsSqIoTCdTF6TQaEqiHGwlEAvWqKbxISKBlzpBAJNCyhFK7I4GpiPxsgASq5gUJVMWJBOridBoNCdTDjQQigXrVFF4kJNAyZ0ggEmhZQqndkcBURH42QAJV84IEquJEAnVxOo2GBOrhRgKRQL1qCi8SEmiZMyQQCbQsodTuSGAqIj8bIIGqeUECVXEigbo4nUZDAvVwI4FIoF41hRcJCbTMGRKIBFqWUGp3JDAVkZ8NkEDVvCCBqjiRQF2cTqMhgXq4kUAkUK+awouEBFrmDAlEAi1LKLU7EpiKyM8GSKBqXpBAVZxIoC5Op9GQQD3cSCASqFdN4UVCAi1zhgQigZYllNodCUxF5GcDJFA1L0igKk4kUBen02hIoB5uJBAJ1Kum8CIhgZY5QwKRQMsSSu2OBKYi8rMBEqiaFyRQFScSqIvTaTQkUA83EogE6lVTeJGQQMucIYFIoGUJpXZHAlMR+dkAy8VCZAAAIABJREFUCVTNCxKoihMJ1MXpNBoSqIcbCUQC9aopvEhIoGXOkEAk0LKEUrsjgamI/GyABKrmBQlUxYkE6uJ0Gg0J1MONBCKBetUUXiQk0DJnSCASaFlCqd2RwFREfjZAAlXzggSq4kQCdXE6jYYE6uFGApFAvWoKLxISaJkzJBAJtCyh1O5IYCoiPxsggap5QQJVcSKBujidRkMC9XAjgUigXjWFFwkJtMwZEogEWpZQanckMBWRnw2QQNW8IIGqOJFAXZxOoyGBeriRQCRQr5rCi4QEWuYMCUQCLUsotTsSmIrIzwZIoGpekEBVnEigLk6n0ZBAPdxIIBKoV03hRUICLXOGBCKBliWU2h0JTEXkZwMkUDUvSKAqTiRQF6fTaEigHm4kEAnUq6bwIiGBljlDApFAyxJK7Y4EpiLyswESqJoXJFAVJxKoi9NpNCRQDzcSiATqVVN4kZBAy5whgUigZQmldkcCUxH52QAJVM0LEqiKEwnUxek0GhKohxsJRAL1qim8SEigZc6QQCTQsoRSuyOBqYj8bIAEquYFCVTFiQTq4nQaDQnUw40EIoF61RReJCTQMmdIIBJoWUKp3ZHAVER+NkACVfOCBKriRAJ1cTqNhgTq4UYCkUC9agovEhJomTMkEAm0LKHU7khgKiI/GyCBqnlBAlVxIoG6OJ1GQwL1cCOBSKBeNYUXCQm0zBkSiARallBqdyQwFZGfDZBA1bwggao4kUBdnE6jIYF6uJFAJFCvmsKLhARa5gwJRAItSyi1OxKYisjPBkigal6QQFWcSKAuTqfRkEA93EggEqhXTeFFQgItc4YEIoGWJZTaHQlMReRnAyRQNS9IoCpOJFAXp9NoSKAebiQQCdSrpvAiIYGWOUMCkUDLEkrtjgSmIvKzARKomhckUBUnEqiL02k0JFAPNxKIBOpVU3iRkEDLnCGBSKBlCaV2RwJTEfnZAAlUzQsSqIoTCdTF6TQaEqiHGwlEAvWqKbxISKBlzpBAJNCyhFK7I4GpiPxsgASq5gUJVMWJBOridBoNCdTDjQQigXrVFF4kJNAyZ0ggEmhZQqndkcBURH42QAJV84IEquJEAnVxOo2GBOrhRgKRQL1qCi8SEmiZMyQQCbQsodTuSGAqIj8bIIGqeUECVXEigbo4nUZDAvVwI4FIoF41hRep8BLY3b1PFt9yv6x8ak05ew/cvlBmTJ9S/veKVc/I9UuXl/49Z1ab3HDthdLSMqz0byQQCcz7ZY8E5k04p/hIoCpYJFAVJxKoi9NpNCRQDzcSiATqVVN4kQovgdt37JIfPvKEXPHNr5TEbu2LG2RRx71y99Jr5PiJraV/L7urU+5YcrWMHjVSlt3TWcry/EvakcAq9b74rE0yYf2ZMnj/9vBeESkj7hkxWbad8pj0jDjO2dyQQGeodS+EBKryRAJVcSKBujidRkMC9XAjgUigXjWFF6nwEphMmZHCKxbeJvMvay+tBhrpO/bo8TJ39sxS06QUshLISmDeL3skMG/COcVHAlXBIoGqOJFAXZxOoyGBeriRQCRQr5rCi4QEJnK2cdNmWbTkPulYeJG0jjuytFW07eQTyhIY/7lZKUQCkcC8X/ZIYN6Ec4qPBKqCRQJVcSKBujidRkMC9XAjgUigXjWFFwkJjOUsuj8wkr7o3+3nnFG+RzApgft7DmbO+o6PDsjyp3fL61sOZO4bQofvnb1JWl9o3u2gH7U9LiOO/JSTVJj6+tvn9sjqV/Y7uZ7ri1x5xjaZuvFrMnTneteXzv96g4bItplrZeT46flfS0QOHuyV5/5ft/z4F3udXM/1RZpdAnec0iktx/07GTx4kBO0/++dvfLfV+2Rg71OLuf0ItMnDpH/8InlMmrDNU6v6+piH01aKIOm3yhDDxns5JKb3t0n9z29R7p2NV+xlCTw9HUydt2XnLB0fZG9R35J9rU9Ii0jRmW+tKv6yjwwOqgRQAJ/jzISvvFjx5Tv90tKoWmalMD3dmT/wNW9r1ceemZv00pgs98T+MGMx6T38ElqL8JagXp7Rf7hn/bKz3/d4+R6ri9y5Re6ZOpvvt60Evj+nzwvvaNOcILV1Mor/9IjD/0y++8kJwO0vEizS+D2kx6V/Z/4tzLIjQPKb7cdkL96ortpJfD8TyyXI5pUAs1K4O4p/9lZrby346D89c+7m1cC29bJ2F81rwTuOPknMmjo4Zl/Ax816tDMfegQFgEkUEQqCWCURu4JzF7QzS6BHAyTvSaq9fj2F7rk000sge9+9nnpOXyqHrCUSBveOSA/+eU+Z9dzeaFml8BtJz0q3WO/7Azpezt65Y4nm1gCxy+XI15rzpVAtoPqvUzYDlqdZeuY4XqgieQlgcJLYKXVvnimOB00e90igdmZ1erBPYG6PJ1F455AVdRIoCpO7gnUxek0GhKohxsJRAL1qim8SIWXQLO989IFt8rmrV19sjfvvDnlbaE8JzBbYSOB2XiltUYC0wh5+nMkUDUxSKAqTiRQF6fTaEigHm4kEAnUq6bwIhVeAm1Txumg/QkigbZV1bc/EqjL01k0JFAVNRKoihMJ1MXpNBoSqIcbCUQC9aopvEhIoGXOkEAk0LKEUrsjgamI/GyABKrmBQlUxYkE6uJ0Gg0J1MONBCKBetUUXiQk0DJnSCASaFlCqd2RwFREfjZAAlXzggSq4kQCdXE6jYYE6uFGApFAvWoKLxISaJkzJBAJtCyh1O5IYCoiPxsggap5QQJVcSKBujidRkMC9XAjgUigXjWFFwkJtMwZEogEWpZQanckMBWRnw2QQNW8IIGqOJFAXZxOoyGBeriRQCRQr5rCi4QEWuYMCUQCLUsotTsSmIrIzwZIoGpekEBVnEigLk6n0ZBAPdxIIBKoV03hRUICLXOGBCKBliWU2h0JTEXkZwMkUDUvSKAqTiRQF6fTaEigHm4kEAnUq6bwIiGBljlDApFAyxJK7Y4EpiLyswESqJoXJFAVJxKoi9NpNCRQDzcSiATqVVN4kZBAy5whgUigZQmldkcCUxH52QAJVM0LEqiKEwnUxek0GhKohxsJRAL1qim8SEigZc6QQCTQsoRSuyOBqYj8bIAEquYFCVTFiQTq4nQaDQnUw40EIoF61RReJCTQMmdIIBJoWUKp3ZHAVER+NkACVfOCBKriRAJ1cTqNhgTq4UYCkUC9agovEhJomTMkEAm0LKHU7khgKiI/GyCBqnlBAlVxIoG6OJ1GQwL1cCOBSKBeNYUXCQm0zBkSiARallBqdyQwFZGfDZBA1bwggao4kUBdnE6jIYF6uJFAJFCvmsKLhARa5gwJRAItSyi1OxKYisjPBkigal6QQFWcSKAuTqfRkEA93EggEqhXTeFFQgItc4YEIoGWJZTaHQlMReRnAyRQNS9IoCpOJFAXp9NoSKAebiQQCdSrpvAiIYGWOUMCkUDLEkrtjgSmIvKzARKomhckUBUnEqiL02k0JFAPNxKIBOpVU3iRkEDLnCGBSKBlCaV2RwJTEfnZAAlUzQsSqIoTCdTF6TQaEqiHGwlEAvWqKbxISKBlzpBAJNCyhFK7I4GpiPxsgASq5gUJVMWJBOridBoNCdTDjQQigXrVFF4kJNAyZ0ggEmhZQqndkcBURH42QAJV84IEquJEAnVxOo2GBOrhRgKRQL1qCi8SEmiZMyQQCbQsodTuSGAqIj8bIIGqeUECVXEigbo4nUZDAvVwI4FIoF41hRcJCbTMGRKIBFqWUGp3JDAVkZ8NkEDVvCCBqjiRQF2cTqMhgXq4kUAkUK+awouEBFrmDAlEAi1LKLU7EpiKyM8GSKBqXpBAVZxIoC5Op9GQQD3cSCASqFdN4UVCAi1zhgQigZYllNodCUxF5GcDJFA1L0igKk4kUBen02hIoB5uJBAJ1Kum8CIhgZY5QwKRQMsSSu2OBKYi8rMBEqiaFyRQFScSqIvTaTQkUA83EogE6lVTeJGQQMucIYFIoGUJpXZHAlMR+dkACVTNCxKoihMJ1MXpNBoSqIcbCUQC9aopvEhIoGXOkEAk0LKEUrsjgamI/GyABKrmBQlUxYkE6uJ0Gg0J1MONBCKBetUUXiQk0DJnSCASaFlCqd2RwFREfjZAAlXzggSq4kQCdXE6jYYE6uFGApFAvWoKLxISaJkzJBAJtCyh1O5IYCoiPxsggap5QQJVcSKBujidRkMC9XAjgUigXjWFFwkJtMwZEogEWpZQanckMBWRnw2QQNW8IIGqOJFAXZxOoyGBeriRQCRQr5rCi4QEWuYMCUQCLUsotTsSmIrIzwZIoGpekEBVnEigLk6n0ZBAPdxIIBKoV03hRUICLXOGBCKBliWU2h0JTEXkZwMkUDUvSKAqTiRQF6fTaEigHm4kEAnUq6bwIiGBljlDApFAyxJK7Y4EpiLyswESqJoXJFAVJxKoi9NpNCRQDzcSiATqVVN4kZBAy5whgUigZQmldkcCUxH52QAJVM0LEqiKEwnUxek0GhKohxsJRAL1qim8SEigZc6QQCTQsoRSuyOBqYj8bIAEquYFCVTFiQTq4nQaDQnUw40EIoF61RReJCTQMmdIIBJoWUKp3ZHAVER+NkACVfOCBKriRAJ1cTqNhgTq4UYCkUC9agovEhJomTMkEAm0LKHU7khgKiI/GyCBqnlBAlVxIoG6OJ1GQwL1cCOBSKBeNYUXCQm0zBkSiARallBqdyQwFZGfDZBA1bwggao4kUBdnE6jIYF6uJFAJFCvmsKLhARa5gwJRAItSyi1OxKYisjPBkigal6QQFWcSKAuTqfRkEA93EggEqhXTeFFQgItc4YEIoGWJZTaHQlMReRnAyRQNS9IoCpOJFAXp9NoSKAebiQQCdSrpvAiIYGWOUMCkUDLEkrtjgSmIvKzARKomhckUBUnEqiL02k0JFAPNxKIBOpVU3iRkEDLnCGBSKBlCaV2RwJTEfnZAAlUzQsSqIoTCdTF6TQaEqiHGwlEAvWqKbxISKBlzpBAJNCyhFK7I4GpiPxsgASq5gUJVMWJBOridBoNCdTDjQQigXrVFF4kJLCOnK1Y9Yxcv3R5qeWcWW1yw7UXSkvLsNK/kUAksI4SsmqCBFrha1xnJFCVPRKoihMJ1MXpNBoSqIcbCUQC9aopvEhIYErO1r64QZbd1Sl3LLlaRo8aKcvu6Sz1mH9JOxJYhd3iszbJhPVnyuD928N7RaSMuGfEZNl2ymPSM+I4Z3NDAp2h1r0QEqjKEwlUxYkE6uJ0Gg0J1MONBCKBetUUXiQkMCVnRvqOPXq8zJ09s9QyKYWsBPYHiATq/iJAAnV5OouGBKqiRgJVcSKBujidRkMC9XAjgUigXjWFFwkJrJGz7u59sviW+6Xt5BPKErhx02ZZtOQ+6Vh4kRw/sZXtoBX4IYG6vwiQQF2ezqIhgaqokUBVnEigLk6n0ZBAPdxIIBKoV03hRUIC65DA9nPOkBnTp5RaJiVwICnf/mGP/OgfPxpI1yD6/PmnN8qYN/8yiLEOZJA90zpk5Ng/GkjXzH327T8o/+P/fCTv7jyYuW8IHc6c9J5M/u13QxjqgMbY/UfXy+ijPzOgvlk7HTjYK8++ukde2Lg/a9cg2h8zZrDM3nNBEGMdyCD3H3OeHDZ5rgwZPGgg3TP3+fW/7JF/eHFf5n4hdBh9+CD56qj7ZNj2Z0MYbuYxHhz5KRl60n+RYUMHZ+47kA4bf7tX/n5d90C6et9n2CEifz5prYx8607vxzrQAfaetlxGHH7EQLvTr4kJIIE1klvPSmAT1wZTgwAEIAABCEAAAhCAAASakAASmJLUtHsCm7AmmBIEIAABCEAAAhCAAAQg0MQEkMCU5KadDtrEtcHUIAABCEAAAhCAAAQgAIEmJIAE1pHUWs8JrKM7TRIEkmINIAhAAAIDJVBp2361WMlH/Az0mvQLlwDvP+HmbqAjj5/l0DruyD4H/vE7YaBU6dcMBJDAZshixjmYN8ELrlrSp9e88+aUn32YMVzm5rwJZ0bWsA7VcrV9xy5ZdNO98p3Lzy2dkssXBKoRiCRt5VNr+jR54PaF5QO3bOghgTb0/O1rfsdcsfA2mX9Ze7lOolyPHztmwO9XvP/4m/N6R1Yph0mZi79HmbjRqe5IYL2UaVcEAkhgEbKcmGPyF2ilN9s8sfAmnCdd3djVasPksPPx1XLDtRdKS8sw3YsSrakIVDtg69IFt8rl3/pq+fE7LibNX/1dUNa5RvJ3TxbZ1xkBUXwlkPwjZFQrx0w4qvyeVO1zBnXka1YZVyMIIIGNoN7gayZ/OSZ/KUZbJ74863S56fsPyolTJ8lNiy6S6zruk5defaM0+jmz2sq/bJPtzc+TK4vxLbXm5ybmHUuultGjRpYeu2E+EG7e2iWt48bI3UuvKa8umQ9tH320R3Z9tFvMSkLy5w1GWYjLV/rgHD8wyfz38odWlljE8xO9MZta+dGjT5TyG68b0z6+Kh2vCfOzanGTtRStKMXrqFINFiJZHk6y2oeu5ON2auXP5HzNC6/IyMNGyMOP/aw0yyjvleJXqysk0MMCqTKkpAQmD2mr9fsjmed4jRhRWHZXZ/n9h/eYcGoiGmmUz+jxXeZ3x989+Wzps8I35s4qfX4wvzPefHtLacU4y3bQtPezGSdNKb/fmfezb7WfLVcv/kHF97fwyDLiohFAAouW8d9/8I6/CSb/qhZ9GPuzM9vKW27MhyrzZZ6XGL05m1/Ac2fPLEtc1D755m36Luq4tyx3cQk1MeNbfpJtzS/knz69ptw3+jDICpS7wq20chxtBR19xEhZ9fRzpTfeSNy2vNtV+gPBnr17S7mN/jprfr74lvul7eQTSnWTzHX8TTu50hjV35gjPiY33/mwdFx3cfkPCP/8m3fk7DNmyJOr18onj5tQ+gAQ1XDHootVthy6o918V6omgcnv18pfJP6R+MVrcvihh9ZdV0hgOPUVfx956533yh/ooxnU+v1hXv/J3xPRv19/851+Esh7TDh1EY00/n5h/tt8Gembedq00u/8+B8N6pVAU3Np72dGAo1YJlcfo/e7+Pbl8Kgy4qIRQAKLlvHE6ks0/fgKTvIv9JUQxT9MJdsn/0qX/OAV/wCXfENOfjCs1JdtiG6LNpnPWltBawl+JInHHj2+JIHJ3MY/uP3js/9U2m4arRZX++BXjQRbftzWSK2r1cpFpdUdEyvZJ/nHn3itJCWwVl398JEnSkM1H+L48ptA9CHbfOiOS1o06lp5jmoiWilK/oEpuRIYrwm2uvtdF/H3guizwF//jydl1sxTpOuDnfLMcy/Lf/z6n/a5Z71eCUzOvNb7WfJ3FO85YdQNo+xLAAksYEVU2isf/972D3aVb6KOH/oR3yZhsEVbPuuRwOiDv+mXlMCk1CW3GvIG3fgijX+IMvmJ/toa5TN+0FC0rdP8LHmwQ7VtpNEM41tC4/UW30Ya3w4ab1/pAJIbF8xzes9Z4zPl3wjqXQmslb+sEhhtT07WFRLoX31UG1FcAs37R/KPQsn3IxMn/vsg+p11xTe/UlopjoQw+f7HHxrDqYn4SKMdTBf++9ml2rjuym+I+ezy4IqnSr/zf/DDv+2zY6Teg2GSB+dVez9DAsOsG0aNBBa+BipJYLWTtCIJNG+U0TY/cxAIK4HFKqNo5WXBFf9e7vzrx0pvuOZ+zixbfQ2xpATG/zhQjWjaSlJJNn//QS86NZC/yvpTn/XcExid2Fctf1klsFpdsR3Un7pIG0mlewKT70G1fn9Ev7OMJDzxs+dLJxmb9y4kMI18GD+Pfq8YSdu9p1suOf+c0g4Cs+33uH/1CXm364Pyin+9K4FZ3s+QwDDqhFHWJsBKYAErZCArgfEPT8ljutNWAiu96a5dv6G01S9aLYruL6x0TyArgY0v0njOk/mIb60yH9ajv9inrQQmc23am7/izj7zNHl+/Yby/X3JQx1MO3PPRySVcQmM7jdM3rfaeILFHUE9p4Mm2yTzl0UCa9UVK4Hh1GG100GjPxTUyrP5A1X0++G11/9Fzj7j1PKOACQwnBpIG2m0KyS+4yNaIY5/L4sE1vt+hgSmZYefh0AACQwhS8pjTG53MOGTp3VGWyeilcDkCZ5jPj5KTj1par+Tt0z75D1k0ZtxtEXLbCONJLCe00GRQOUCGGC45OEcJkxyC9/nTp0mO3ft7iP48Rvlk/eAJWsx2mJc7fvJEyTj20Tjfcw9rqZGv3bOv2E76ADzrdWt0jZPEzv5nMBa+csigSZ2tfphJVArq/nHqfR4muRhHC+/trHPM2+Tp1JXEkUkMP/cubpC9DqP/y6plPN6JTDL+xkS6CrLXCdPAkhgnnSJDQEIQAACEIAABCAAAQhAwDMCSKBnCWE4EIAABCAAAQhAAAIQgAAE8iSABOZJl9gQgAAEIAABCEAAAhCAAAQ8I4AEepYQhgMBCEAAAhCAAAQgAAEIQCBPAkhgnnSJDQEIQAACEIAABCAAAQhAwDMCSKBnCWE4EIAABCAAAQhAAAIQgAAE8iSABOZJl9gQgAAEIAABCEAAAhCAAAQ8I4AEepYQhgMBCEAAAhCAAAQgAAEIQCBPAkhgnnSJDQEIQAACEIAABCAAAQhAwDMCSKBnCWE4EIAABCAAAQhAAAIQgAAE8iSABOZJl9gQgAAEIAABCEAAAhCAAAQ8I4AEepYQhgMBCEAAAhCAAAQgAAEIQCBPAkhgnnSJDQEIQAACEIAABCAAAQhAwDMCSKBnCWE4EIAABCAAAQhAAAIQgAAE8iSABOZJl9gQgAAEIAABCEAAAhCAAAQ8I4AEepYQhgMBCEAAAhCAAAQgAAEIQCBPAkhgnnSJDQEIQAACEIAABCAAAQhAwDMCSKBnCWE4EIAABCBQm8CKVc/ImhdekRuuvVBaWoaBCwIQgAAEIACBjASQwIzAaA4BCEAAAn0JbNy0WS5dcKts3trV5wcP3L5QZkyfIt3d+2TxLfdL28knyNzZM63x5SGBecS0nigBIAABCEAAAjkRQAJzAktYCEAAAkUgsPbFDXLBVUskEr5ozub7zzz3ssy/pB0JLEIhMEcIQAACEAiKABIYVLoYLAQgAAG/CCy7p1O2vNtVc2umabP8oZXlgbeOGyN3L71Guj7YKcvu6pQ7llwto0eNLP3crCouWnKfdCy8SI6f2Fr+XnKlcc6stj7XNCt51y9dXr5GXEqjVb4vz/qsXL5wWalNNAZzjUhk42RvXDBPZdXSr2wxGghAAAIQgMDvCCCBVAIEIAABCAyYgBGszsdX9xG5ZLBq20GNfKVJYLTVtGPRxaWtpeYruXUz+e9kn0gQ5503p7Qyab6S8sp20AGXAB0hAAEIQCBAAkhggEljyBCAAAR8IbB9xy65YuFt8tKrb5SHlNwaaiOBRtbMVyRvSQncs3evLLrpXvnO5eeWVw4jyYv6VRK8pIAigb5UFOOAAAQgAAEXBJBAF5S5BgQgAIECEEhuyYy2VA5UAlvHHVnxQJm4sG3e+n7FQ2kM7mjlDwksQPExRQhAAAIQyEQACcyEi8YQgAAEIFAPgfg20eGHHlpR5tK2g0YS2H7OGeWtoMmVQCOByXsIk+NDAuvJGG0gAAEIQKBIBJDAImWbuUIAAhBQJvDk6rXyhbbp/Z7XlxQ8s63z2KPH9zlspV4JTD5aIi51Zjuo2Y46/7L2PqIYn2Y9EmjGYu5t5NmDygVCOAhAAAIQ8JIAEuhlWhgUBCAAgTAIGLn76dNrSqd9Rqd5RvcJzjhpStWDWMzskge4RNtG17/8z+V4SVGM+pw07ZNlYas0BtPvrXfeK0lnvRK4qOPePvMIIwOMEgIQgAAEIJCdABKYnRk9IAABCEAgRiD5CAjzo+QjFuIHyFR7PIP5/rWXnys/fOSnfR4REb/X0Dwa4sSpk0oH0cRX7ZL3I8avUY8EmjHH58EjIihxCEAAAhBoZgJIYDNnl7lBAAIQgAAEIAABCEAAAhBIEEACKQkIQAACEIAABCAAAQhAAAIFIoAEFijZTBUCEIAABCAAAQhAAAIQgAASSA1AAAIQgAAEIAABCEAAAhAoEAEksEDJZqoQgAAEIAABCEAAAhCAAASQQGoAAhCAAAQgAAEIQAACEIBAgQgggQVKNlOFAAQgAAEIQAACEIAABCCABFIDEIAABCAAAQhAAAIQgAAECkQACSxQspkqBCAAAQhAAAIQgAAEIAABJJAagAAEIAABCEAAAhCAAAQgUCACSGCBks1UIQABCEAAAhCAAAQgAAEIIIHUAAQgAAEIQAACEIAABCAAgQIRQAILlGymCgEIQAACEIAABCAAAQhAAAmkBiAAAQhAAAIQgAAEIAABCBSIABJYoGQzVQhAAAIQgAAEIAABCEAAAkggNQABCEAAAhCAAAQgAAEIQKBABJDAAiWbqUIAAhCAAAQgAAEIQAACEEACqQEIQAACEIAABCAAAQhAAAIFIoAEFijZTBUCEIAABCAAAQhAAAIQgAASSA1AAAIQgAAEIAABCEAAAhAoEAEksEDJZqoQgAAEIAABCEAAAhCAAASQQGoAAhCAAAQgAAEIQAACEIBAgQgggQVKNlOFAAQgAAEIQAACEIAABCCABFIDEIAABCAAAQhAAAIQgAAECkQACSxQspkqBCAAAQhAAAIQgAAEIAABJJAagAAEIAABCEAAAhCAAAQgUCACSGCBks1UIQABCEAAAhCAAAQgAAEIIIHUAAQgAAEIQAACEIAABCAAgQIRQAILlGymCgEIQAACEIAABCAAAQhAAAmkBiAAAQhAAAIQgAAEIAABCBSIABJYoGQzVQhAAAIQgAAEIAABCEAAAkggNQABCEAAAhCAAAQgAAEIQKBABJDAAiWbqUIAAhCAAAQgAAEIQAACEEACqQEIQAACEIAABCAAAQhAAAIFIoAEFijZTBUCEIAABCAAAQhAAAIQgAASSA2EdfehAAAAWElEQVRAAAIQgAAEIAABCEAAAhAoEAEksEDJZqoQgAAEIAABCEAAAhCAAASQQGoAAhCAAAQgAAEIQAACEIBAgQgggQVKNlOFAAQgAAEIQAACEIAABCDw/wFjcYN52V5ZHwAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data = [\n", " go.Bar(\n", " x=df.index, y=df[\"Midterm\"], name=\"Midterm\", marker=dict(color=\"cornflowerblue\")\n", " ),\n", " go.Bar(x=df.index, y=df[\"Final\"], name=\"Final\", marker=dict(color=\"orange\")),\n", "]\n", "layout = go.Layout(\n", " title=\"Scores on Midterm and Final Exams\",\n", " xaxis=dict(title=\"Student\"),\n", " yaxis=dict(title=\"Scores(points)\"),\n", ")\n", "fig = go.Figure(data, layout)\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 4 }